

ENCINA WASTEWATER AUTHORITY

A Public Agency

6200 Avenida Encinas Carlsbad, CA 92011-1095 Telephone (760) 438-3941 FAX (760) 438-3861 (Plant)

February 27, 2023

Via CIWQS Ref: EC 23-0021

California Regional Water Quality Control Board San Diego Region 2375 Northside Drive, Suite 100 San Diego, CA 92108

Attention: Ms. Joann Lim

SUBJECT: Submittal of 2022 Annual Pretreatment Program Report

Period January 1, 2022 through December 31, 2022

Dear Joann,

Enclosed please find a copy of the Encina Wastewater Authority Annual Pretreatment Program Report for 2022. This report is submitted as required by NPDES Permit Number CA0107395.

Please contact Alicia Appel, Director of Environmental Compliance, at 760-268-8861 if you have any questions.

Sincerely,

Scott McClelland General Manager

Attachment

cc: Amelia Whitson, EPA Region IX

Gurgangn/ "Gur" Chand, State Water Resources Control Board

Gary Erbeck, San Diego County Department of Environmental Health

ENCINA WASTEWATER AUTHORITY

A Public Agency

6200 Avenida Encinas Carlsbad, CA 92011-1095 Telephone (760) 438-3941 FAX (760) 438-3861 (Plant)

ENCINA WASTEWATER AUTHORITY

2022 ANNUAL PRETREATMENT PROGRAM REPORT

NPDES PERMIT HOLDER AND

SEWER AUTHORITY NAME:

Encina Wastewater Authority

REPORT DATE:

February 27, 2023

PERIOD COVERED BY THIS REPORT:

January 1 – December 31, 2022

NAME OF POTW:

Encina Water Pollution

Control Facility

NPDES PERMIT NUMBER:

CA0107395

PERSON TO CONTACT CONCERNING INFORMATION CONTAINED IN THIS REPORT:

Alicia Appel
Director of Environmental Compliance
Encina Wastewater Authority
6200 Avenida Encinas
Carlsbad, CA 92011-1095
Telephone: (760) 268-8861

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Scott McClelland General Manager

Dated:

Encina Wastewater Authority Annual Pretreatment Program Report

Table of Contents

Program Summary	2
Summary of Analytical Results	3
Upset, Interference or Pass-through Incidents	3
Industrial Users	3
Baseline Monitoring Report Requirements	5
Enforcement Activities	6
Pollution Prevention Plans	8
Best Management Practices Program	8
Significant Changes in Pretreatment Program Operation	8
Summary of Annual Pretreatment Budget	9
Public Education	9
Biosolids Disposal Methods	10

Appendix A – Priority Pollutant Laboratory Data

Appendix B – Significant Industrial User Listing

Appendix C – Non-Significant Categorical Industrial User Listing

Appendix D – Pretreatment Program Budget

Appendix E – SNC Publication

Program Summary

The Encina Wastewater Authority (EWA) operates an approved pretreatment program in North San Diego County. EWA is a joint powers authority consisting of six member agencies: the Cities of Vista, Carlsbad, and Encinitas, as well as the Vallecitos Water District, the Buena Sanitation District, and the Leucadia Wastewater District. The Encina System is comprised of the collection, treatment and disposal facilities of its member agencies including: the Encina Water Pollution Control Facility, the Gafner Water Reclamation Facility, the Meadowlark Water Reclamation Facility, and the Encina Ocean Outfall.

EC: 23-0021

The EWA service area encompasses a population of approximately 378,976 and covers a 125 square mile area. This area is predominantly characterized by residential development. At the end of 2022, the combined flow to the EWPCF and MWRF was approximately (24.83 MGD) and the total combined industrial flow to both plants was approximately (0.36 MGD) and represented only 1.45% of the total average daily influent to both treatment plants. Although 2022 had a slight uptick in percentage of industrial flows, the manufacturing sector and residential population growth in the service area remained fairly steady.

During 2022, there were no incidents of upset or pass-through at EWA directly attributed to industrial users. Encina did experience treatment plant upset conditions between April 27 and April 30, 2022, which resulted in violations of weekly average effluent limits for Carbonaceous Biochemical Oxygen Demand (CBOD) in both pounds per day (lbs/day) and concentration in milligrams per liter (mg/L). The cause for this upset is undetermined but the Source Control group effectively investigated and ruled out permitted industrial waste sources. All other monitoring of the Encina Ocean Outfall and receiving water in 2022 demonstrated compliance with regulatory standards.

During 2022, EWA had 56 permitted Industrial Users (IUs): 16 Categorical Industrial Users (CIUs), four Non-categorical Significant Industrial Users (SIUs) and 36 Class III Industrial Users (Non-Significant CIUs, R/D, zero-discharge CIUs, and other businesses with the potential to impact the Encina System). EWA staff conducted a total of 100 Inspections including 54 annual inspections, 27 site visits, 14 investigative inspections, and five enforcement inspections.

EWA and the industrial users were able to perform all required monitoring during the calendar year. A total of 244 monitoring events were performed during the calendar year. EWA collected samples from 114 monitoring events, including 86 from CIU/SIU categories. Nearly all sample events involved setting up a 24 hour composite sampler, required two visits by EWA inspection staff to the permitted industry per event. Permitted Industries collected samples from 130 monitoring events including 93 from CIU/SIU categories. Laboratory data confirm that EWA's Best Management Practices (BMP) Program is effective overall in limiting the level of pollutants discharged to the Encina System.

EWA maintains a proactive enforcement stance. During 2022, 47 Notices of Violation (NOVs) were issued and \$86,350 in fines and enforcement costs were assessed. Four of the 20 CIU/SIUs active in the service area during the year were found to be in Significant Non-Compliance (SNC). All four of the industries in SNC during the year are implementing corrective actions and working to demonstrate compliance.

EC: 23-0021

Local Limit Studies for the Encina Water Pollution Control Facility (EWPCF) and Meadowlark Water Reclamation Facility (MWRF) were completed in December 2009; final approval was received from the San Diego Regional Water Quality Control Board (RWQCB) on March 14, 2012. EWA's Pretreatment Ordinance was amended to reflect the new technically-based local limits, including other recommended changes. EWA's renewed NPDES permit became effective on November 1, 2018. With the issuance of the permit, EWA retained the services of Larry Walker Associates to perform a local limits evaluation for both the EWPCF and MWRF. Larry Walker Associates submitted final local limit evaluations for the two plants. The evaluation determined that, overall, the existing local limits are adequate and protective of the Encina Wastewater Authority's facilities. The evaluations findings were submitted to the board on August 19, 2020.

Summary of Analytical Results

Data required in this section has been reported electronically to the California RWQCB through the California Integrated Water Quality System (CIWQS). Please refer to the Encina Water Pollution Control Facility and Ocean Outfall 2022 monthly, quarterly, and semiannual self-monitoring reports for Order No. R9-2018-0059, NPDES Permit No. CA0107395. Full priority pollutant scans of the influent and effluent for the EWPCF and MWRF are attached in Appendix A.

Upset, Interference or Pass-through Incidents

During 2022, there were no incidents of upset or pass-through at EWA directly attributed to industrial users. Encina did experience treatment plant upset conditions between April 27 and April 30, 2022, which resulted in violations of weekly average effluent limits for Carbonaceous Biochemical Oxygen Demand (CBOD) in both pounds per day (lbs/day) and concentration in milligrams per liter (mg/L). As reported in CIWQS on May 31, 2022, the cause for this upset is undetermined but the Source Control group effectively investigated and ruled out permitted industrial waste sources. All other monitoring of the Encina Ocean Outfall and receiving water in 2022 demonstrated compliance with regulatory standards.

Industrial Users

At the end of 2022, the combined flow to the EWPCF and MWRF was approximately 24.83 MGD and the total combined industrial flow to both plants was approximately 0.36

MGD and represented only 1.45% of the total average daily influent to both treatment plants. Although last year was a slight uptick in percentage of industrial flows, the manufacturing sector and residential population growth in the service area remain fairly steady.

EC: 23-0021

Appendix B contains a list of all SIUs along with: federal category, if applicable; type of pretreatment in place; the number of inspections conducted; the number of samples collected by EWA; the number of samples collected by the IU; the number of limit violations; the IU's compliance status by quarter; whether all Total Toxic Organics (TTO) certifications or monitoring data were submitted; and a summary of any enforcement actions taken. Below is a list of additions, changes of status, and deletions that occurred during the year.

Additions

- Premier Nutra Pharma (PNP) is located at 5800 Newton Drive in Carlsbad. PNP's primary business is the formulation of nutritional supplements in the form of soft gel capsules, liquid capsules, powder blends and infused gummies. PNP was found in 2021 to be discharging federally regulated wastewater without a permit and was issued a Cease and Desist order until a Class I permit could be issued. The Class I permit was issued in May of 2022 and the industry is regulated as a Pharmaceutical Manufacturer under 40 CFR 439.47 Subpart D mixing, compounding, and formulating (PSNS). Federally-regulated wastewater is generated by CIP production equipment washing, utensil and other production equipment/container cleaning, and plant washdown. Industrial wastewater is treated through a 3-stage clarifier.
- SAFC (Whiptail facility) opened a second location at 2827 Whiptail Loop in Carlsbad. SAFC is a contract manufacturing facility producing viral vectors used in vaccine and therapeutic clinical products. The industry grows bacteria and harvests and extracts specific molecular structures within the bacteria for use in various clinical products. SAFC is regulated under 40 CFR 439.27 Subpart B Extraction Products (PSNS). Initial testing showed the industrial wastewater generated does not meet discharge requirements. SAFC will continue to haul all federally-regulated wastewater for offsite disposal while they research potential pretreatment options. SAFC was issued a Class III zero discharge permit on November 8, 2022.
- Natural Alternatives International (NAI) added a Carlsbad location on Farnsworth Ct, which performs similar operations to the already permitted facility in Vista. NAI's primary business is manufacturing dietary supplements and nutritional powders. This facility is regulated under 40 CFR 439.47 Subpart D: mixing, compounding, and formulating (PSNS). All industrial wastewater is routed to a 3-chamber clarifier. A Class I permit was issued in Q4 2022, however due to construction delays no industrial wastewater was generated in 2022.
- Hayes Handpiece Franchise (HHF) was identified during an annual inspection of Ortho Organizers and is located at 1822 Ashton Avenue Suite B in Carlsbad.
 HHF is a dental tool repair facility and the core metal finishing operation of

etching is occasionally performed as part of the repair process. The facility is subject to 40 CFR Part 433.17 Metal Finishing (PSNS) and the facility complies with the regulation by not discharging any federally regulated wastewater to sewer. A Class III zero discharge permit was issued in Q3 2022.

EC: 23-0021

Ostendo Technology Inc. (OTI) located at 6231 Yarrow Drive in Carlsbad and is an R&D facility that fabricates quantum photo imagers. The processes performed would be regulated under 40 CFR 469.18 Electrical and Electronic Components Subpart A – Semiconductor subcategory (PSNS). However, since this is a stand-alone R&D facility, the facility is exempted from federal regulations. The R&D semiconductor fabrication includes oxidation, lithography, etching, electroplating, vapor phase deposition, and layering. The industry submits semi-annual CSRs with a R&D certification.

Changes of Status

- Westbridge Agricultural Products is now San Agrow, name change.
- Callaway Golf is now Top Golf Callaway Brands, name change.
- Lancer Orthodontics relocated from Vista to Carlsbad.
- SAFC (El Camino) changed classification from BMP to Class III, a result of no longer qualifying for the R&D exemption from federal regulation. SAFC is now a categorical zero discharge facility regulated under 40 CFR 439.47.
- Javo Beverage changed classification from BMP to Class II, due to significant increase in discharge volume, and they now discharge >25,000 gpd. Javo primarily produces premade coffee drinks and tea, and treats wastewater by pH neutralization, screening and settling.

Deletions

- CoorsTek, relocated out of state. A site inspection verified all operations had ceased and the equipment had been dismantled. The permit was rescinded on 2/28/2022.
- Anything Liquid Manufacturing, went out of business. A site visit confirmed the facility had been vacated. The permit was rescinded on 10/25/2022.

Appendix C contains a list of industries that EWA has designated as Non-Significant Categorical Industrial Users (NSCIUs) based on their limited ability to impact the Encina System (discharge less than 100 gallons per day, never discharge concentrated wastestreams, and have demonstrated compliance with applicable discharge limits.) EWA continues to perform annual inspections of these businesses and each industry must submit semiannual certification statements that they continue to meet the NSCIU criteria.

Baseline Monitoring Report Requirements

Four Baseline Monitoring Reports (BMR) were received in 2022, two from Categorical Industrial Users. Ionis Pharmaceuticals regulated under 40 CFR 439 Subpart C Chemical Synthesis, submitted a BMR approximately 90 days in advance of their limited

commercial production run in Q3 2022. The BMR submitted demonstrated the industry's compliance with all federal and local pretreatment standards.

EC: 23-0021

The second Categorical BMR was received from Premier Nutra Pharma Inc, regulated under 40 CFR 439 Subpart D with their application documents. The document demonstrated the industry's compliance with all local and federal pretreatment standards.

The remaining two BMR's were collected for local limit evaluations from either new industry or new waste streams from existing industrial users. Both showed compliance with applicable standards.

Enforcement Activities

EWA maintains a proactive enforcement stance in accordance with the Enforcement Response Plan and Guide. Administrative Orders are not an approved element of EWA's Enforcement Response Plan. During the 2022 calendar year, 47 Notices of Violation (NOVs) were issued and \$86,350 in fines and enforcement costs were assessed. Two ongoing enforcement issues are described below:

SAFC Carlsbad, Inc.

Based on information obtained during a site visit conducted on July 7, 2020, plus research and information submitted by the industry, it was determined that SAFC Carlsbad, Inc. was discharging federally regulated wastewater generated from viral vector manufacturing operations including cell culturing and purification plus associated equipment and glassware cleaning and manufacturing area floor mopping to sewer. These operations are subject to regulation under the Pharmaceutical Manufacturing Pretreatment Standards set forth in 40 CFR 439.47. Section 3.1 of the Encina Wastewater Authority's (EWA) Pretreatment Ordinance prohibits the discharge of industrial wastewater to the Encina Sewerage System without applying for and obtaining the proper permit. Therefore, on July 22, 2020, a Cease and Desist Letter was issued. On December 20, 2022, NOV 22-0093 was issued for \$33,750 for the discharge of federally regulated industrial wastewater to the Encina Sewerage System without applying for and obtaining the proper permit.

SAFC Carlsbad Inc. was permitted as a BMP research and development facility. The industrial user intends to transition to a Class I discharge permit subject to 40 CFR 439 Pharmaceutical Manufacturing Subpart D PSNS. The Baseline Monitoring Report submitted in December 2020 demonstrated the need for additional pretreatment prior to initiating discharge.

Premier Nutra Pharma (PNP)

Based on information obtained during an unannounced inspection on August 11, 2021, plus research and information obtained from the industry, it was determined that PNP was discharging federally regulated wastewater generated from softgel and liquid capsule manufacturing plus associated equipment cleaning and manufacturing area floor mopping. These operations are subject to regulation under the Pharmaceutical

Manufacturing Pretreatment Standards set forth in 40 CFR 439.47 Subpart D-mixing, compounding, and formulation (PSNS). Section 3.1 of the Encina Wastewater Authority's (EWA) Pretreatment Ordinance prohibits the discharge of industrial wastewater to the Encina Sewerage System without applying for and obtaining the proper permit. Therefore, on August 22, 2021, a Cease and Desist Letter was issued to PNP until a Class 1 permit was issued. On May 5, 2022, PNP was issued a Class I Discharge Permit to discharge 2,100 gpd of industrial wastewater to sewer. On December 20, 2022, NOV 22-0092 was issued for \$11,200 for the discharge of federally regulated industrial wastewater to the Encina Sewerage System without applying for and obtaining a proper permit.

EC: 23-0021

<u>SIUs in Significant Non Compliance (SNC)</u>. In Calendar year 2022, four of the twenty CIU/SIUs active in the service area during the year were found to be in SNC, including a Technical Review Criteria (TRC) violation for a single monthly average excursion.

Captek Softgel International, Inc.:

Captek was in chronic SNC for each of the four evaluation periods due to exceeding the limit for Biochemical Oxygen Demand (BOD). Captek was also in SNC for failure to meet an interim compliance date in the fourth guarter 2022. In calendar year 2022, the IU was issued 8 NOVs and \$14,900 in fines and fees. In the calendar year, the following violations were identified: 15 BOD exceedances, failure to meet an Interim Compliance Date, six failures to notify, two >30-day late reports. Captek attributes the limit violations to a rapid increase in business over the past 1.5 years. Captek implemented a strategic sampling program to investigate and evaluate potential sources of the BOD loading in industrial wastewater discharges and unsuccessfully attempted numerous interim measures to reduce the BOD. Due to the pattern of noncompliance and inability of Captek to maintain consistent permit compliance, they were put on a compliance schedule on April 15, 2022. The first pretreatment system (ozone with carbon filtration) failed to reduce the BOD to acceptable levels. Captek acted quickly to implement an alternative pretreatment system. a dissolved air floatation (DAF) system. Due to Captek's quick action to implement alterative pretreatment, EWA management has decided to extend the final compliance date to April 14, 2023. Captek expects to demonstrate compliance on or before April 14, 2023.

Cintas Corporation:

Cintas was in Chronic SNC in the first evaluation period for BOD and in TRC SNC in the second evaluation period for BOD. In the 2022 calendar year, the IU was issued 10 NOVs for \$9,750 in fines and fees for the following issues: 5 BOD, 1 Oil/Grease, 2 failure to notify, 1 late report, 1 late report >30 days, and 2 incomplete reports. They were put on a compliance schedule on August 25, 2022. Cintas attributes the limit violations to a rapid increase in business over the past 1.5 years along with failing pumps and shakers in the pretreatment system. This situation was reportedly exacerbated by delays in sourcing replacement parts. Cintas's corrective actions include stocking replacement parts for all crucial components to avoid deficiencies in their pretreatment system, plus increased frequency of sludge removal from the WW collection pits. They expect to demonstrate compliance on or before March 1, 2023.

Primarch Manufacturing:

Primarch Manufacturing in Vista was in TRC SNC for a single acetone Monthly Average Violation (Q4 2022) in the fourth evaluation period. In 2022, the IU was issued one NOV for \$100 in fines and fees. Primarch was unable to identify the cause of the single MA Acetone violation. However, they retrained the employees on the cleaning SOPs and believe they will be able to achieve compliance.

EC: 23-0021

Premier Nutra Pharma:

In SNC for submitting the 90-Day Compliance Report >30 days late. The report was due on August 5, 2022 and submitted on 11/17/2022. The IU was issued three NOVs with \$15,400 in fines and fees.

Pollution Prevention Plans

No industries have submitted or been required to submit a pollution prevention plan.

Best Management Practices Program

In addition to the regulation of SIUs, EWA implements a BMP Program to reduce the level of pollutants entering the system and reaching the EWPCF. EWA currently has 605 businesses in the BMP program. Users agree to implement a variety of actions directed at reducing the level of pollutants in their discharge. Inspections by EWA staff, along with periodic inventory efforts with Member Agencies and regulatory databases, are used to verify program effectiveness and industry coverage.

Significant Changes in Pretreatment Program Operation

In 2022, EWA made no significant changes in the operation of the Pretreatment Program.

Sewage Transfer Agreement Between the City of Oceanside and City of Vista

The City of Vista maintains an agreement with the City Oceanside to provide a connection to the City of Vista collection system for wastewater disposal. During calendar year 2022, the City of Oceanside discharged an average of 1.32 MGD to the City of Vista collection system. The wastewater is then conveyed to the Encina Water Pollution Control Facility for treatment and discharge to the Pacific Ocean. The agreement requires the City of Oceanside to administer EWA's local limits and pretreatment ordinance and allows for a maximum average daily flow of 2.15 MGD.

The area contributing wastewater to the City of Vista is characterized as mainly residential with light commercial. The City of Oceanside reports that there were no additional

NPDES Permit No. CA0107395 2022 Annual Pretreatment Program Report Page 9

Significant Industrial Users active in the service area contributing to the City of Vista for the remainder of CY 2022.

EC: 23-0021

Summary of Annual Pretreatment Budget

FY 2022 budget for EWA's Pretreatment Program is \$920,931. The FY 2023 budget for the Pretreatment Program is \$1,036,872. A line-item detail of the budget is attached for reference in Appendix D.

Public Education

The EWPCF has been designed to maximize the use of alternative and renewable resources, including methane gas and biosolids, plus generate effluent for recycled wastewater operations. In 2022, EWA continued multiple plant enhancement and rehabilitation projects, which includes Digester Improvements and Rehabilitation, Primary Area Improvements and Rehabilitation, Cogeneration Building Structural Repair, and Network Improvements. Due to the ongoing construction projects and COVID-19 pandemic measures, EWA temporarily halted public tours starting in September 2019. Tours may reinitiate once it is deemed appropriate.

EWA also generally participates in other community outreach activities. In 2022, EWA purchased new public outreach gifts to promote sustainability and environmental awareness while representing EWA at participating member agency events. Encina Source Control staff brought a wastewater treatment plant demonstration model to community events including: Alta Vista Fall Fun Festival on October 15, 2022, the Carlsbad Citizens Academy on April 14, 2022, Agua Hedionda Lagoon World Water Day on March 12, 2022.

EWA staff regularly provide information via phone and e-mails to private citizens and inquiring parties. In addition, copies of the brochure entitled "10 Simple Things You Can Do to Protect the Ocean" were provided to various organizations and private citizens as requested, plus EWA maintains multiple social media outlets and the EWA homepage.

40 CFR Part 403.8(f)(2)(viii) requires at least annual public notification, in the largest daily newspaper in the POTW's service area, of industrial users, which at any time during the previous twelve months, were found in significant non-compliance. Attached in Appendix E is a copy of the SNC publication for the period of January 1 to December 31, 2022.

Biosolids Disposal Methods

In 2022, EWA produced approximately 7,175.72 Dry Metric Tons (DMT) of Class A and Class B biosolids, plus digester cleaning biosolids were generated. MPE Environmental transported (867.64 DMT) of digester cleaning biosolids to Copper Mountain Landfill.

NPDES Permit No. CA0107395 2022 Annual Pretreatment Program Report Page 10

Denali transported 5,337.25 DMT to farms in Yuma, Arizona or Blythe, California for land application. The remaining (970.82 DMT) was sold and/or given away for use in the following applications: golf courses, nurseries, High School FFA Organizations, soil blenders, and fertilizer products.

EC: 23-0021

Laboratory data demonstrates that metal levels in the biosolids are well below the allowable pollutant concentrations for land application as found in Table 3 of 40 CFR Part 503.13. The ability to consistently meet these standards is largely due to EWA's small industrial base and effective Pretreatment Program.

Appendix A – Priority Pollutant Laboratory Data

SAMPLE RESULTS REPORT

Report Date: 5/3/2022

	REPORT TO		ELAP Certification		428005
Sample ID	Sample Point	Analyte Name	Result	Units	Method Reference
	Encina Influent			Collected: 02/23/20	022 Time: 08:59
		Zinc by ICP	0.206	mg/L	EPA 200.7
		Thallium by ICP	< 0.028	_	EPA 200.7
		Silver by ICP	<0.026	mg/L	EPA 200.7
		Selenium by ICP	<0.026	mg/L	EPA 200.7
		Nickel by ICP	<0.016	mg/L	EPA 200.7
		Molybdenum by ICP	< 0.016	mg/L	EPA 200.7
		Lead by ICP	<0.020	mg/L	EPA 200.7
		Copper by ICP	0.110	mg/L	EPA 200.7
		Chromium by ICP	< 0.016	mg/L	EPA 200.7
		Cadmium by ICP	< 0.016	-	EPA 200.7
		Beryllium by ICP	<0.018	mg/L	EPA 200.7
		Arsenic by ICP	<0.018	mg/L	EPA 200.7
		Antimony by ICP	< 0.032	mg/L	EPA 200.7

Certified By: Lochael Mongan for SHI Pork) Date: 5322

Jeff Parks, Laboratory Manager

FINAL REPORT

Work Orders: 2B23108 Report Date: 3/24/2022

Received Date: 02/23/2022

Project: 2022 Annual Encina Influent Priority Pollutant Scan

Turnaround Time: Normal

Phones: (760) 268-8801

Fax

P.O. #:

Billing Code:

Attn: Jeff Parks

Client: Encina Wastewater Authority

6200 Avenida Encinas Carlsbad, CA 92011

ELAP-CA #1132 • EPA-UCMR #CA00211 • Guam-EPA #17-008R • LACSD #10143 • NJ-DEP #CA015 • NV-DEP #NAC 445A • SCAQMD #93LA1006

This is a complete final report. The information in this report applies to the samples analyzed in accordance with the chain-of-custody document. Weck Laboratories certifies that the test results meet all requirements of TNI unless noted by qualifiers or written in the Case Narrative. This analytical report must be reproduced in its entirety.

Dear Jeff Parks,

Enclosed are the results of analyses for samples received 2/23/22 with the Chain-of-Custody document. The samples were received in good condition, at 3.1 °C and on ice. All analyses met the method criteria except as noted in the case narrative or in the report with data qualifiers.

Reviewed by:

Kim G. Tu Project Manager

FINAL REPORT

Encina Wastewater Authority 6200 Avenida Encinas Carlsbad, CA 92011 Project Number: 2022 Annual Encina Influent Priority

Pollutant Scan

Reported:

03/24/2022 11:33

Sample Name	Sampled By	Lab ID	Matrix	Sampled	Qualifiers
Encina Influent	Steven Nguyen	2B23108-01	Water	02/22/22 08:54	

Project Manager: Jeff Parks

2B23108 Page 2 of 30

FINAL REPORT

Encina Wastewater Authority 6200 Avenida Encinas Carlsbad, CA 92011 Project Number: 2022 Annual Encina Influent Priority

Pollutant Scan

Reported: 03/24/2022 11:33

Project Manager: Jeff Parks

Sample Results

Sample: Encina Influent Sampled: 02/22/22 8:54 by Steven Nguyen 2B23108-01 (Water)

Analyte	Result	MDL	MRL	Units	Dil	Analyzed	Qualifier
id and Base/Neutral Extractables by GC/MS							
Nethod: EPA 625.1			Instr: GCMS06				
Batch ID: W2B1608	Preparation: EPA 625/L-L SF	0.0	Prepared: 02/2		00	00/04/00	Analyst: rmr
, ,	ND ND	9.8	20	ug/l	20	03/04/22	M-04
1,2 2.6.116.656.126.16	2	9.2	20	ug/l	20	03/04/22	M-04
i, 2 Dipilony in y and 2 men in Education	ND ND	6.0	20	ug/l	20	03/04/22	M-04
·,•	ND ND	8.4	20	ug/l	20	03/04/22	M-04
·,· = · · · · · · · · · · · · · · · · ·	ND	9.6	20	ug/l	20	03/04/22	M-04
2, 1,0 Themerophener	ND	4.4	20	ug/l	20	03/04/22	M-04
_,·	ND	5.2	20	ug/l	20	03/04/22	M-04
2, . 2	ND	15	20	ug/l	20	03/04/22	M-04
_,· , ·	ND	37	200	ug/l	20	03/04/22	M-04
_,	ND	9.2	20	ug/l	20	03/04/22	M-04
2,0 2	ND	5.4	20	ug/l	20	03/04/22	M-04
2-Chloronaphthalene	ND	9.0	20	ug/l	20	03/04/22	M-04
2-Chlorophenol	ND	5.6	20	ug/l	20	03/04/22	M-04
2-Methyl-4,6-dinitrophenol	ND	10	100	ug/l	20	03/04/22	M-04
2-Nitrophenol	ND	5.2	20	ug/l	20	03/04/22	M-04
3,3'-Dichlorobenzidine	ND	50	100	ug/l	20	03/04/22	M-04
4-Bromophenyl phenyl ether	ND	7.2	20	ug/l	20	03/04/22	M-04
4-Chloro-3-methylphenol	ND	4.6	20	ug/l	20	03/04/22	M-04
4-Chlorophenyl phenyl ether	ND	8.2	20	ug/l	20	03/04/22	M-04
4-Nitrophenol	ND	25	100	ug/l	20	03/04/22	M-04
Acenaphthene	ND	7.6	20	ug/l	20	03/04/22	M-04
Acenaphthylene	ND	7.0	20	ug/l	20	03/04/22	M-04
Anthracene	ND	8.2	20	ug/l	20	03/04/22	M-04
Benzidine	ND	64	200	ug/l	20	03/04/22	M-04
Benzo (a) anthracene	ND	3.8	20	ug/l	20	03/04/22	M-04
Benzo (a) pyrene	ND	7.8	20	ug/l	20	03/04/22	M-04
Benzo (b) fluoranthene	ND	9.2	20	ug/l	20	03/04/22	M-04
Benzo (g,h,i) perylene	ND	8.4	40	ug/l	20	03/04/22	M-04
Benzo (k) fluoranthene	ND	4.4	20	ug/l	20	03/04/22	M-04
Bis(2-chloroethoxy)methane	ND	5.0	20	ug/l	20	03/04/22	M-04
Bis(2-chloroethyl)ether	ND	5.4	20	ug/l	20	03/04/22	M-04
Bis(2-chloroisopropyl)ether	ND	7.6	20	ug/l	20	03/04/22	M-04, Q-ME
Bis(2-ethylhexyl)phthalate	ND	46	100	ug/l	20	03/04/22	M-04
Butyl benzyl phthalate	ND	9.8	20	ug/l	20	03/04/22	M-04
Chrysene	ND	3.8	20	ug/l	20	03/04/22	M-04

2B23108 Page 3 of 30

FINAL REPORT

Encina Wastewater Authority 6200 Avenida Encinas Carlsbad, CA 92011

Sample:

2B23108

Project Number: 2022 Annual Encina Influent Priority

Pollutant Scan

Reported: 03/24/2022 11:33

Project Manager: Jeff Parks

Sample Results

Encina Influent

Sampled: 02/22/22 8:54 by Steven Nguyen

Page 4 of 30

2B23108-01 (Water)							(Continued)
Analyte	Result	MDL	MRL	Units	Dil	Analyzed	Qualifier
Acid and Base/Neutral Extractables by G	C/MS (Continued)						
Method: EPA 625.1			Instr: GCMS06				
Batch ID: W2B1608	Preparation: EPA 625/L-L SF		Prepared: 02/2	24/22 08:36			Analyst: rmr
Dibenzo (a,h) anthracene	ND	3.0	40	ug/l	20	03/04/22	M-04
Diethyl phthalate	ND	7.0	20	ug/l	20	03/04/22	M-04
Dimethyl phthalate	ND ND	3.6	20	ug/l	20	03/04/22	M-04
Di-n-butyl phthalate	ND ND	6.8	20	ug/l	20	03/04/22	M-04
Di-n-octyl phthalate	ND	9.2	20	ug/l	20	03/04/22	M-04
Fluoranthene	ND	6.9	20	ug/l	20	03/04/22	M-04
Fluorene	ND	7.0	20	ug/l	20	03/04/22	M-04
Hexachlorobenzene	ND	9.8	20	ug/l	20	03/04/22	M-04
Hexachlorobutadiene	ND	9.4	20	ug/l	20	03/04/22	M-04
Hexachlorocyclopentadiene	ND	6.2	100	ug/l	20	03/04/22	M-04
Hexachloroethane	ND	10	20	ug/l	20	03/04/22	M-04
Indeno (1,2,3-cd) pyrene	ND	4.9	40	ug/l	20	03/04/22	M-04
Isophorone	ND	4.2	20	ug/l	20	03/04/22	M-04
Naphthalene	ND	9.8	20	ug/l	20	03/04/22	M-04
Nitrobenzene	ND	7.2	20	ug/l	20	03/04/22	M-04
N-Nitrosodimethylamine	ND	10	20	ug/l	20	03/04/22	M-04
N-Nitrosodi-n-propylamine	ND	5.2	20	ug/l	20	03/04/22	M-04
N-Nitrosodiphenylamine	ND	3.8	20	ug/l	20	03/04/22	M-04
Pentachlorophenol	ND	8.0	20	ug/l	20	03/04/22	M-04
Phenanthrene	ND	6.4	20	ug/l	20	03/04/22	M-04
Phenol	ND	16	20	ug/l	20	03/04/22	M-04
Pyrene	ND	5.0	20	ug/l	20	03/04/22	M-04
Surrogate(s)							
2,4,6-Tribromophenol	136%	Conc: 57.6	25-120			03/04/22	S-11
2-Fluorobiphenyl	89%	Conc: 18.9	22-120			03/04/22	
2-Fluorophenol	44%	Conc: 18.6	17-120			03/04/22	
Nitrobenzene-d5	65%	Conc: 13.7	47-120			03/04/22	
Phenol-d5	31%	Conc: 13.1	12-120			03/04/22	
Terphenyl-d14		Conc: 25.9	44-129			03/04/22	
Chlorinated Pesticides and/or PCBs by G	C/ECD						
Method: EPA 608.3			Instr: GC07				
Batch ID: W2B1698	Preparation: EPA 608/L-L SF		Prepared: 02/2	25/22 08:34			Analyst: RJG
4,4´-DDD	ND	0.070	5.0	ug/l	10	03/04/22	M-02, M-04
4,4'-DDE	ND	0.070	5.0	ug/l	10	03/04/22	M-02, M-04
4,4'-DDT	ND	0.11	5.0	ug/l	10	03/04/22	M-02, M-04
Aldrin	ND	0.10	5.0	ug/l	10	03/04/22	M-02, M-04

FINAL REPORT

Encina Wastewater Authority 6200 Avenida Encinas Carlsbad, CA 92011

1,1,1-Trichloroethane

1,1,2-Trichloroethane

1,1-Dichloroethane

1,1-Dichloroethene

1,2-Dichloroethane

1,2-Dichloropropane

2-Butanone

2B23108

1,1,2,2-Tetrachloroethane

Sample:

Project Number: 2022 Annual Encina Influent Priority

Pollutant Scan

Reported: 03/24/2022 11:33

Project Manager: Jeff Parks

Sample Results

Encina Influent

Sampled: 02/22/22 8:54 by Steven Nguyen

02/25/22

02/25/22

02/25/22

02/25/22

02/25/22

02/25/22

02/25/22

02/25/22

M-05

M-05

M-05

M-05

M-05

M-05

M-05

M-05

Page 5 of 30

20

20

20

20

20

20

20

20

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

(Continued)

2B23108-01 (Water)							(Continued)
Analyte	Result	MDL	MRL	Units	Dil	Analyzed	Qualifier
Chlorinated Pesticides and/or PCBs by	GC/ECD (Continued)						
Method: EPA 608.3			Instr: GC07				
Batch ID: W2B1698	Preparation: EPA 608/L-L SF		Prepared: 02/2	5/22 08:34			Analyst: RJG
alpha-BHC	ND	0.11	5.0	ug/l	10	03/04/22	M-02, M-04
Aroclor 1016	ND	2.9	100	ug/l	10	03/04/22	M-02, M-04
Aroclor 1221	ND	6.0	100	ug/l	10	03/04/22	M-02, M-04
Aroclor 1232	ND	15	100	ug/l	10	03/04/22	M-02, M-04
Aroclor 1242	ND	9.5	100	ug/l	10	03/04/22	M-02, M-04
Aroclor 1248	ND	8.3	100	ug/l	10	03/04/22	M-02, M-04
Aroclor 1254	ND	4.0	100	ug/l	10	03/04/22	M-02, M-04
Aroclor 1260	ND	5.5	100	ug/l	10	03/04/22	M-02, M-04
beta-BHC	ND	0.15	5.0	ug/l	10	03/04/22	M-02, M-04
Chlordane (tech)	ND	4.3	50	ug/l	10	03/04/22	M-02, M-04
delta-BHC	ND	0.19	5.0	ug/l	10	03/04/22	M-02, M-04
Dieldrin	ND	0.080	5.0	ug/l	10	03/04/22	M-02, M-04
Endosulfan I	ND	0.090	5.0	ug/l	10	03/04/22	M-02, M-04
Endosulfan II	ND	0.070	5.0	ug/l	10	03/04/22	M-02, M-04
Endosulfan sulfate	ND	0.13	5.0	ug/l	10	03/04/22	M-02, M-04
Endrin	ND	0.17	5.0	ug/l	10	03/04/22	M-02, M-04
Endrin aldehyde	ND	0.19	5.0	ug/l	10	03/04/22	M-02, M-04
gamma-BHC (Lindane)	ND	0.040	5.0	ug/l	10	03/04/22	M-02, M-04
Heptachlor	ND	0.060	5.0	ug/l	10	03/04/22	M-02, M-04
Heptachlor epoxide	ND	0.040	5.0	ug/l	10	03/04/22	M-02, M-04
Methoxychlor	ND	0.14	5.0	ug/l	10	03/04/22	M-02, M-04
Toxaphene	ND	8.5	200	ug/l	10	03/04/22	M-02, M-04
Surrogate(s)							
Decachlorobiphenyl	85%	Conc: 0.845	33-133			03/04/22	
Tetrachloro-meta-xylene	73%	Conc: 0.734	32-130			03/04/22	
Volatile Organic Compounds by P&T a	and GC/MS						
Method: EPA 624.1			Instr: GCMS21				
Batch ID: W2B1715	Preparation: EPA 5030		Prepared: 02/2	5/22 09:43			Analyst: ADM

14	859 Clark Avenue,City of Industry CA, 91745	;	Phone: (626) 336-2139 Fax: (626) 336-2634
	1471474/ 14/Q	ckl	ahs com

ND

ND

ND

ND

ND

ND

6.2

7.6

8.4

6.4

6.4

11

8.4

39

20

20

20

20

20

20

20

100

FINAL REPORT

Encina Wastewater Authority 6200 Avenida Encinas Carlsbad, CA 92011 Project Number: 2022 Annual Encina Influent Priority

Pollutant Scan

Reported: 03/24/2022 11:33

Project Manager: Jeff Parks

Sample:

Sample Results

Encina Influent

(Continued)

Sampled: 02/22/22 8:54 by Steven Nguyen

2B23108-01 (Water)							(Continued
Analyte	Result	MDL	MRL	Units	Dil	Analyzed	Qualifie
olatile Organic Compounds by P&T and	d GC/MS (Continued)						
Method: EPA 624.1			Instr: GCMS21				
Batch ID: W2B1715	Preparation: EPA 5030	3.8	Prepared: 02/2		20	02/25/22	Analyst: ADN M-0
, ,	ND			ug/l		02/25/22	
		9.2	100	ug/l	20		M-0
		12	100	ug/l	20	02/25/22 02/25/22	M-C
Accione	2.0	32	100	ug/l	20		M-0
7.6.6.6		23	100	ug/l	20	02/25/22	M-05, O-0
-	ND ND	13	40	ug/l	20	02/25/22	M-(
	ND	9.4	20	ug/l	20	02/25/22	M-(
	ND	8.8	20	ug/l	20	02/25/22	M-0
2.0	ND	5.4	20	ug/l	20	02/25/22	M-(
Bromomoniano	ND	10	20	ug/l	20	02/25/22	M-(
2.002.0		6.6	20	ug/l	20	02/25/22	M-05,
Carbon tetrachloride	ND	5.6	20	ug/l	20	02/25/22	M-
Chlorobenzene	ND	7.0	20	ug/l	20	02/25/22	M-
Chloroethane	ND	7.6	20	ug/l	20	02/25/22	M-
Chloroform	ND	5.8	20	ug/l	20	02/25/22	M-
Chloromethane	ND	5.8	20	ug/l	20	02/25/22	M-
cis-1,3-Dichloropropene	ND	7.2	20	ug/l	20	02/25/22	M-
Dibromochloromethane	ND	7.0	20	ug/l	20	02/25/22	M-
Dichlorodifluoromethane (Freon 12)	ND	6.0	20	ug/l	20	02/25/22	M-
Ethylbenzene	ND	8.2	20	ug/l	20	02/25/22	M-
m-Dichlorobenzene	ND	7.8	20	ug/l	20	02/25/22	M-
Methyl tert-butyl ether (MTBE)	ND	8.0	20	ug/l	20	02/25/22	M-
Methylene chloride	ND	7.8	20	ug/l	20	02/25/22	M-
o-Dichlorobenzene	ND	7.0	20	ug/l	20	02/25/22	M-
p-Dichlorobenzene	ND	8.4	20	ug/l	20	02/25/22	M-
Tetrachloroethene	ND	6.8	20	ug/l	20	02/25/22	M-
Toluene	ND	7.2	20	ug/l	20	02/25/22	M-
trans-1,2-Dichloroethene	ND	5.4	20	ug/l	20	02/25/22	M-
trans-1,3-Dichloropropene	ND	6.6	20	ug/l	20	02/25/22	M-
Trichloroethene	ND	6.8	20	ug/l	20	02/25/22	M-
Trichlorofluoromethane	ND	8.6	20	ug/l	20	02/25/22	M-
Vinyl chloride	ND	6.2	20	ug/l	20	02/25/22	M-
Surrogate(s)							
_		Conc: 50.9	82-125			02/25/22	
•	99%	Conc: 49.5	88-108			02/25/22	

FINAL REPORT

Encina Wastewater Authority 6200 Avenida Encinas Carlsbad, CA 92011

Sample:

Toluene-d8

Project Number: 2022 Annual Encina Influent Priority

Pollutant Scan

Reported:

(Continued)

03/24/2022 11:33

Sample Results

Encina Influent

2B23108-01 (Water)

Sampled: 02/22/22 8:54 by Steven Nguyen

02/25/22

(Continued)

Dil Qualifier MDL MRL Units Analyte Result Analyzed

Project Manager: Jeff Parks

Volatile Organic Compounds by P&T and GC/MS (Continued)

Method: EPA 624.1 Instr: GCMS21

Batch ID: W2B1715 Prepared: 02/25/22 09:43 Preparation: EPA 5030 Analyst: ADM

Conc: 48.5

92-112

2B23108 Page 7 of 30

FINAL REPORT

Encina Wastewater Authority 6200 Avenida Encinas Carlsbad, CA 92011 Project Number: 2022 Annual Encina Influent Priority

Pollutant Scan

Reported: 03/24/2022 11:33

Project Manager: Jeff Parks

		<

Sample Results PACE-MN

Sample:	Encina Influent	Sampled: 02/22/22 8:54 by Steven Nguyen
	2B23108-01 (Water)	

2B23108-01 (Water)						
Analyte	Result	MRL	Units	Dil	Analyzed	Qualifier
Dioxins and Furans by Isotope Dilution HRGC/HRMS						
Method: SW8290	Batch ID: 32585	Prepared: 03/0	7/22 10:00			Analyst: MS4
1,2,3,4,6,7,8-HpCDD	7.2	52	pg/L	1	03/10/22	J
1,2,3,4,6,7,8-HpCDF	ND	52	pg/L	1	03/10/22	
1,2,3,4,7,8,9-HpCDF	ND	52	pg/L	1	03/10/22	
1,2,3,4,7,8-HxCDD	ND	52	pg/L	1	03/10/22	
1,2,3,4,7,8-HxCDF	ND	52	pg/L	1	03/10/22	I, J
1,2,3,6,7,8-HxCDD	ND	52	pg/L	1	03/10/22	
1,2,3,6,7,8-HxCDF	ND	52	pg/L	1	03/10/22	
1,2,3,7,8,9-HxCDD	ND	52	pg/L	1	03/10/22	
1,2,3,7,8,9-HxCDF	ND	52	pg/L	1	03/10/22	
1,2,3,7,8-PeCDD	ND	52	pg/L	1	03/10/22	I, J
1,2,3,7,8-PeCDF	ND	52	pg/L	1	03/10/22	
2,3,4,6,7,8-HxCDF	ND	52	pg/L	1	03/10/22	
2,3,4,7,8-PeCDF	ND	52	pg/L	1	03/10/22	
2,3,7,8-TCDD	ND	10	pg/L	1	03/10/22	
2,3,7,8-TCDF	ND	10	pg/L	1	03/10/22	
OCDD	67	100	pg/L	1	03/10/22	J
OCDF	ND	100	pg/L	1	03/10/22	
Total HpCDD		52	pg/L	1	03/10/22	J
Total HpCDF	ND	52	pg/L	1	03/10/22	
Total HxCDD	1.9	52	pg/L	1	03/10/22	J
Total HxCDF	ND	52	pg/L	1	03/10/22	
Total PeCDD	ND	52	pg/L	1	03/10/22	
Total PeCDF	7.7	52	pg/L	1	03/10/22	J
Total TCDD	ND	10	pg/L	1	03/10/22	
Total TCDF	ND	10	pg/L	1	03/10/22	
Surrogate(s) 1,2,3,4,6,7,8-HpCDD-13C	46%	40.0-135.0			03/10/22	
1,2,3,4,6,7,8-HpCDF-13C	47%	40.0-135.0			03/10/22	
1,2,3,4,7,8,9-HpCDF-13C	41%	40.0-135.0			03/10/22	
1,2,3,4,7,8-HxCDD-13C	43%	40.0-135.0			03/10/22	
1,2,3,4,7,8-HxCDF-13C	57%	40.0-135.0			03/10/22	
1,2,3,6,7,8-HxCDD-13C	61%	40.0-135.0			03/10/22	
1,2,3,6,7,8-HxCDF-13C	60%	40.0-135.0			03/10/22	
1,2,3,7,8,9-HxCDF-13C	50%	40.0-135.0			03/10/22	
1,2,3,7,8-PeCDD-13C	52%	40.0-135.0			03/10/22	
1,2,3,7,8-PeCDF-13C	55%	40.0-135.0			03/10/22	
2,3,4,6,7,8-HxCDF-13C	52%	40.0-135.0			03/10/22	
2,3,4,7,8-PeCDF-13C	50%	40.0-135.0			03/10/22	

2B23108 Page 8 of 30

FINAL REPORT

Encina Wastewater Authority 6200 Avenida Encinas Carlsbad, CA 92011 **Project Number:** 2022 Annual Encina Influent Priority

Pollutant Scan

Reported: 03/24/2022 11:33

Project Manager: Jeff Parks

Sample Results PACE-MN

Sample:	Encina Influent 2B23108-01 (Water)				Sampled: 02	2/22/22 8:54 by St (even Nguyen Continued)
Analyte		Result	MRL	Units	Dil	Analyzed	Qualifier
Dioxins and F	Furans by Isotope Dilution HRGC/HRMS (Continu	ed)					
2,3,7,8-T	CDD-13C	49%	40.0-135.0			03/10/22	
2,3,7,8-T	CDF-13C	50%	40.0-135.0			03/10/22	
OCDD-13		31%	40.0-135.0			03/10/22	

FINAL REPORT

Encina Wastewater Authority 6200 Avenida Encinas Carlsbad, CA 92011 Project Number: 2022 Annual Encina Influent Priority

Pollutant Scan

Reported: 03/24/2022 11:33

Project Manager: Jeff Parks

		C	
		,	

Quality Control Results

							0/5			
Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifie
atch: 32585 - SW8290	nesuit	IVINL	Onto	Level	Nesuit	JUNEC	Limits	RFD	Limit	Quanne
				d- 02 (07 (1	22 Ameline 1	. 02 (00 (2				
BLK (BLANK-97059) 1,2,3,4,6,7,8-HpCDD	· · · · · · · · · · · · · ND	50	pg/L	pared: 03/07/2	22 Analyzed:	03/09/2	2			1, -
1,2,3,4,6,7,8-HpCDF	ND	50	pg/L							l,
1,2,3,4,7,8,9-HpCDF	· · · · · · · · · · · ND	50	pg/L							
1,2,3,4,7,8-HxCDD	2.0	50	pg/L							
1,2,3,4,7,8-HxCDF	ND	50	pg/L							
1,2,3,6,7,8-HxCDD	· ND	50	pg/L							
1,2,3,6,7,8-HxCDF	· · · · · · · · · · · ND	50	pg/L							
1,2,3,7,8,9-HxCDD	ND	50	pg/L							
1,2,3,7,8,9-HxCDF	ND	50	pg/L							Ι, ,
1,2,3,7,8-PeCDD	ND	50	pg/L							ŕ
1,2,3,7,8-PeCDF		50	pg/L							
2,3,4,6,7,8-HxCDF	ND	50	pg/L							
2,3,4,7,8-PeCDF	ND	50	pg/L							
2,3,7,8-TCDD	· · · · · · · · · · ND	10	pg/L							
2,3,7,8-TCDF	ND	10	pg/L							
OCDD	6.9	100	pg/L							
OCDF	ND	100	pg/L							I,
Total HpCDD	1.4	50	pg/L							
Total HpCDF	1.4	50	pg/L							
Total HxCDD	2.0	50	pg/L							
Total HxCDF	1.3	50	pg/L							
Total PeCDD	ND	50	pg/L							
Total PeCDF	· · · · · · · · · · · · · · · · ·	50	pg/L							
Total TCDD	ND	10	pg/L							
Total TCDF	· ND	10	pg/L							
Surrogate(s)										
	1600		pg/L	2000		80	40.0-135.0)		
1,2,3,4,6,7,8-HpCDF-13C	1800		pg/L	2000		90	40.0-135.0)		
1,2,3,4,7,8,9-HpCDF-13C	1600		pg/L	2000		78	40.0-135.0)		
1,2,3,4,7,8-HxCDD-13C	2100		pg/L	2000		106	40.0-135.0)		
1,2,3,4,7,8-HxCDF-13C	2100		pg/L	2000		106	40.0-135.0)		
1,2,3,6,7,8-HxCDD-13C	2200		pg/L	2000		110	40.0-135.0)		
1,2,3,6,7,8-HxCDF-13C	2200		pg/L	2000		111	40.0-135.0)		
1,2,3,7,8,9-HxCDF-13C	2400		pg/L	2000		122	40.0-135.0)		
1,2,3,7,8-PeCDD-13C	2400		pg/L	2000		122	40.0-135.0)		
1,2,3,7,8-PeCDF-13C	2500		pg/L	2000		124	40.0-135.0)		
2,3,4,6,7,8-HxCDF-13C	2300		pg/L	2000		115	40.0-135.0)		
2,3,4,7,8-PeCDF-13C	2500		pg/L	2000		123	40.0-135.0)		
2,3,7,8-TCDD-13C	2100		pg/L	2000		104	40.0-135.0)		

FINAL REPORT

Encina Wastewater Authority 6200 Avenida Encinas Carlsbad, CA 92011 Project Number: 2022 Annual Encina Influent Priority

Pollutant Scan

Reported: 03/24/2022 11:33

Project Manager: Jeff Parks

Dioxins and Furans by Isotope Dilution HF	RGC/HRMS (Continued)									
				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
Batch: 32585 - SW8290 (Continued)										
BLK (BLANK-97059) Surrogate(s)			Pre	pared: 03/07/2	22 Analyzed: 0	3/09/2	.2			
2,3,7,8-TCDF-13C	2100		pg/L	2000		106	40.0-135.0			
OCDD-13C	2900		pg/L	4000		72	40.0-135.0			
BS (LCS-97060)			Pre	nared: 03/07/2	22 Analyzed: 0	3/10/2	2			
1,2,3,4,6,7,8-HpCDD	1000	52	pg/L	1000	. z maryzea. o		70.0-130.0			
1,2,3,4,6,7,8-HpCDF	1100	52	pg/L	1000		106	70.0-130.0			
1,2,3,4,7,8,9-HpCDF	1100	52	pg/L	1000		106	70.0-130.0			
1,2,3,4,7,8-HxCDD	1100	52	pg/L	1000		107	70.0-130.0			
1,2,3,4,7,8-HxCDF	1100	52	pg/L	1000		103	70.0-130.0			
1,2,3,6,7,8-HxCDD	1000	52	pg/L	1000		99	70.0-130.0			
1,2,3,6,7,8-HxCDF	970	52	pg/L	1000		93	70.0-130.0			
1,2,3,7,8,9-HxCDD	1100	52	pg/L	1000		102	70.0-130.0			
1,2,3,7,8,9-HxCDF	1100	52	pg/L	1000		102	70.0-130.0			
1,2,3,7,8-PeCDD	960	52	pg/L	1000		92	70.0-130.0			
1,2,3,7,8-PeCDF	1000	52	pg/L	1000		100	70.0-130.0			
2,3,4,6,7,8-HxCDF	1100	52	pg/L	1000		105	70.0-130.0			
2,3,4,7,8-PeCDF	1000	52	pg/L	1000		99	70.0-130.0			
2,3,7,8-TCDD	230	10	pg/L	210		111	70.0-130.0			
2,3,7,8-TCDF	230	10	pg/L	210		109	70.0-130.0			
OCDD	2400	100	pg/L	2100		113	70.0-130.0			
OCDF	2000	100	pg/L	2100		96	70.0-130.0			
Surrogate(s)										
1,2,3,4,6,7,8-HpCDD-13C	1300		pg/L	2100		62	40.0-135.0			
1,2,3,4,6,7,8-HpCDF-13C	1200		pg/L	2100		56	40.0-135.0			
1,2,3,4,7,8,9-HpCDF-13C	970		pg/L	2100		46	40.0-135.0			
1,2,3,4,7,8-HxCDD-13C	1500		pg/L	2100		72	40.0-135.0			
1,2,3,4,7,8-HxCDF-13C	1600		pg/L	2100		75	40.0-135.0			
1,2,3,6,7,8-HxCDD-13C	1600		pg/L	2100		78	40.0-135.0			
1,2,3,6,7,8-HxCDF-13C	1300		pg/L	2100		63	40.0-135.0			
1,2,3,7,8,9-HxCDF-13C			pg/L	2100		69	40.0-135.0			
1,2,3,7,8-PeCDD-13C			pg/L	2100		95	40.0-135.0			
1,2,3,7,8-PeCDF-13C	1700		pg/L	2100		79	40.0-135.0			
2,3,4,6,7,8-HxCDF-13C	1400		pg/L	2100		66	40.0-135.0			
2,3,4,7,8-PeCDF-13C	1700		pg/L	2100		83	40.0-135.0			
2,3,7,8-TCDD-13C	1500		pg/L	2100		71	40.0-135.0			
2,3,7,8-TCDF-13C	1500		pg/L	2100		70	40.0-135.0			
OCDD-13C	1600		pg/L	4200		38	40.0-135.0			1

FINAL REPORT

Encina Wastewater Authority 6200 Avenida Encinas Carlsbad, CA 92011 Project Number: 2022 Annual Encina Influent Priority

Pollutant Scan

Project Manager: Jeff Parks

Reported:

03/24/2022 11:33

Quality Control Results

Acid and Base/Neutral Extractables by GC/MS											
	_				Spike	Source	0/5=4	%REC		RPD	
·	Result	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualif
atch: W2B1608 - EPA 625.1											
Blank (W2B1608-BLK1) 1,2,4-Trichlorobenzene	- ND	0.49	1.0	Pre _l ug/l	pared: 02/24/2	22 Analyzed:	03/03/22				
1,2-Dichlorobenzene	- ND	0.46	1.0	ug/l							
1,2-Dichloroberizene 1,2-Diphenylhydrazine/Azobenzene	- ND	0.30	1.0	ug/l							
1,3-Dichlorobenzene	- ND	0.42	1.0	ug/l							
1,4-Dichlorobenzene	- ND	0.48	1.0	ug/l							
	- ND	0.22	1.0								
2, 1,0 1110110101	- ND	0.26	1.0	ug/l							
2, . 2.66.96				ug/l							
_, ·, · [- ND	0.76	1.0	ug/l							
2,4-Dinitrophenol	- ND	1.9	10	ug/l							
2,4-Dinitrotoluene	- ND	0.46	1.0	ug/l							
2,6-Dinitrotoluene	- ND	0.27	1.0	ug/l							
2-Chloronaphthalene	- ND	0.45	1.0	ug/l							
2-Chlorophenol	- ND	0.28	1.0	ug/l							
2-Methyl-4,6-dinitrophenol	- · ND	0.50	5.0	ug/l							
2-Nitrophenol	- · ND	0.26	1.0	ug/l							
3,3'-Dichlorobenzidine	- ND	2.5	5.0	ug/l							
4-Bromophenyl phenyl ether	- ND	0.36	1.0	ug/l							
4-Chloro-3-methylphenol	- · ND	0.23	1.0	ug/l							
4-Chlorophenyl phenyl ether	- ND	0.41	1.0	ug/l							
4-Nitrophenol	- · ND	1.2	5.0	ug/l							
Acenaphthene	- · ND	0.38	1.0	ug/l							
Acenaphthylene	- · ND	0.35	1.0	ug/l							
Anthracene	- ND	0.41	1.0	ug/l							
Benzidine	- ND	3.2	10	ug/l							
Benzo (a) anthracene	- · ND	0.19	1.0	ug/l							
Benzo (a) pyrene	- ND	0.39	1.0	ug/l							
Benzo (b) fluoranthene	- ND	0.46	1.0	ug/l							
Benzo (g,h,i) perylene	- ND	0.42	2.0	ug/l							
Benzo (k) fluoranthene	- · ND	0.22	1.0	ug/l							
Bis(2-chloroethoxy)methane	- ND	0.25	1.0	ug/l							
Bis(2-chloroethyl)ether	- ND	0.27	1.0	ug/l							
Bis(2-chloroisopropyl)ether	- ND	0.38	1.0	ug/l							
Bis(2-ethylhexyl)phthalate	- ND	2.3	5.0	ug/l							
Butyl benzyl phthalate	- ND	0.49	1.0	ug/l							
Chrysene	- ND	0.19	1.0	ug/l							
Dibenzo (a,h) anthracene	- ND	0.15	2.0	ug/l							
Diethyl phthalate	- ND	0.35	1.0	ug/l							
Dimethyl phthalate	- ND	0.18	1.0	ug/l							
Di-n-butyl phthalate	- ND	0.34	1.0	ug/l							
323108											Page 12 o

FINAL REPORT

Encina Wastewater Authority 6200 Avenida Encinas Carlsbad, CA 92011 Project Number: 2022 Annual Encina Influent Priority

Pollutant Scan

Reported: 03/24/2022 11:33

Project Manager: Jeff Parks

Quality Control Results

Market No	
Name	Qualifi
Photop phthalate ND 0.46 1.0 Ug	
Fluoranthene	
Fluorene	
Hexachlorobenzene	
Hexachlorocyclopentadiene	
Hexachlorocyclopentadiene	
Hexachloroethane	
Indeno (1,2,3-cd) pyrene	
Sophorone ND 0.21 1.0 ugh Naphthalen ND 0.49 1.0 ugh Naphthalen ND 0.49 1.0 ugh Nitrobenzene ND 0.36 1.0 ugh Naphthalen ND 0.50 1.0 ugh Naphthalen ND 0.50 1.0 ugh Naphthalen ND 0.50 1.0 ugh Naphthalen ND 0.26 1.0 ugh Naphthalen ND 0.40 1.0 ugh Naphthalen ND 0.40 1.0 ugh Naphthalen ND 0.40 1.0 ugh Naphthalen ND 0.81 ugh Naphthalen ND 0.81 ugh Naphthalen ND 0.	
National	
Nitrobenzene ND 0.36 1.0 ug/l	
N-Nitrosodimethylamine	
N-Nitrosodijn-nyropylamine ND 0.26 1.0 ug/l Pentachlorophenol ND 0.40 1.0 ug/l Phenanthrene ND 0.32 1.0 ug/l Phenol ND 0.81 1.0 ug/l Phenol ND 0.25 1.0 ug/l Pyrene ND 0.26 1.0 ug/l Pyrenel-d5 1.2	
NN-Introsodiphenylamine ND 0.19 1.0 ug/l	
Pentachlorophenol ND 0.40 1.0 ug/l	
Phenanthrene	
ND 0.25 1.0 ug/	
2,4,6-Tribromophenol 39.7	
24,6-Tribromophenol 39.7 ug/l 40.0 99 25-120 2-Fluorobiphenyl 17.7 ug/l 20.0 88 22-120 2-Fluorophenol 20.6 ug/l 40.0 52 17-120 Nitrobenzene-d5 14.6 ug/l 20.0 73 47-120 Phenol-d5 12.2 ug/l 40.0 30 12-120 Terphenyl-d14 22.3 ug/l 20.0 111 44-129 Slank (W2B1608-BLK2) prepared: 02/24/22 Analyzed: 03/08/22 12.120 1,2-Dichlorobenzene ND 0.49 1.0 ug/l 1,2-Diphenylhydrazine/Azobenzene ND 0.46 1.0 ug/l 1,2-Diphenylhydrazine/Azobenzene ND 0.42 1.0 ug/l 1,3-Dichlorobenzene ND 0.48 1.0 ug/l 1,4-Dichlorobenzene ND 0.48 1.0 ug/l 2,4-6-Trichlorophenol ND 0.26 1.0 ug/l 2,4-Dinitrotoluene ND 0.76 1.0 ug/l 2,4-Dinitrotoluene ND	
2-Fluorophenol 20.6 ug/l 40.0 52 17-120 Nitrobenzene-d5 14.6 ug/l 20.0 73 47-120 Phenol-d5 12.2 ug/l 40.0 30 12-120 Terphenyl-d14 22.3 ug/l 20.0 111 44-129 Slank (W2B1608-BLK2) Prepared: 02/24/22 Analyzed: 03/08/2* 1,2-4-Trichlorobenzene ND 0.49 1.0 ug/l 1,2-Dichlorobenzene ND 0.30 1.0 ug/l 1,2-Dichlorobenzene ND 0.42 1.0 ug/l 1,3-Dichlorobenzene ND 0.48 1.0 ug/l 1,4-Dichlorobenzene ND 0.48 1.0 ug/l 1,4-Dichlorobenzene ND 0.22 1.0 ug/l 2,4,6-Trichlorophenol ND 0.26 1.0 ug/l 2,4-Dimethylphenol ND 0.76 1.0 ug/l 2,4-Dimethylphenol ND 0.76 1.0 ug/l 2,4-Dimitrophenol ND 0.76 1.0 ug/l 2,4-Dimitrophenol ND 0.46 1.0 ug/l 2,4-Dimitrotoluene ND 0.46 1.0 ug/l 2,4-Dimitrotoluene ND 0.46 1.0 ug/l 2,6-Dimitrotoluene ND 0.27 1.0 ug/l 2,6-Dimitrotoluene ND 0.45 1.0 ug/l	
Nitrobenzene-d5	
Phenol-d5	
ND 0.49 1.0	
1,2,4-Trichlorobenzene ND 0.49 1.0 ug/l 1,2-Dichlorobenzene ND 0.46 1.0 ug/l 1,2-Diphenylhydrazine/Azobenzene ND 0.30 1.0 ug/l 1,3-Dichlorobenzene ND 0.42 1.0 ug/l 1,4-Dichlorobenzene ND 0.48 1.0 ug/l 2,4,6-Trichlorophenol ND 0.22 1.0 ug/l 2,4-Dichlorophenol ND 0.26 1.0 ug/l 2,4-Dimethylphenol ND 0.76 1.0 ug/l 2,4-Dinitrophenol ND 1.9 10 ug/l 2,4-Dinitrotoluene ND 0.46 1.0 ug/l 2,6-Dinitrotoluene ND 0.27 1.0 ug/l 2,6-Dinitrotoluene ND 0.45 1.0 ug/l	
1,2-Dichlorobenzene ND 0.46 1.0 ug/l 1,2-Diphenylhydrazine/Azobenzene ND 0.30 1.0 ug/l 1,3-Dichlorobenzene ND 0.42 1.0 ug/l 1,4-Dichlorobenzene ND 0.48 1.0 ug/l 2,4,6-Trichlorophenol ND 0.22 1.0 ug/l 2,4-Dichlorophenol ND 0.26 1.0 ug/l 2,4-Dimethylphenol ND 0.76 1.0 ug/l 2,4-Dinitrophenol ND 0.46 1.0 ug/l 2,4-Dinitrotoluene ND 0.46 1.0 ug/l 2,6-Dinitrotoluene ND 0.27 1.0 ug/l 2-Chloronaphthalene ND 0.45 1.0 ug/l	
1,2-Diphenylhydrazine/Azobenzene ND 0.30 1.0 ug/l 1,3-Dichlorobenzene ND 0.42 1.0 ug/l 1,4-Dichlorobenzene ND 0.48 1.0 ug/l 2,4,6-Trichlorophenol ND 0.22 1.0 ug/l 2,4-Dichlorophenol ND 0.26 1.0 ug/l 2,4-Dimethylphenol ND 0.76 1.0 ug/l 2,4-Dinitrophenol ND 1.9 10 ug/l 2,4-Dinitrotoluene ND 0.46 1.0 ug/l 2,6-Dinitrotoluene ND 0.27 1.0 ug/l 2,6-Dinitrotoluene ND 0.45 1.0 ug/l 2-Chloronaphthalene ND 0.45 1.0 ug/l	QC
1,3-Dichlorobenzene ND 0.42 1.0 ug/l 1,4-Dichlorobenzene ND 0.48 1.0 ug/l 2,4,6-Trichlorophenol ND 0.22 1.0 ug/l 2,4-Dichlorophenol ND 0.26 1.0 ug/l 2,4-Dimethylphenol ND 0.76 1.0 ug/l 2,4-Dinitrophenol ND 1.9 10 ug/l 2,4-Dinitrotoluene ND 0.46 1.0 ug/l 2,6-Dinitrotoluene ND 0.27 1.0 ug/l 2-Chloronaphthalene ND 0.45 1.0 ug/l	QC
1,4-Dichlorobenzene ND 0.48 1.0 ug/l 2,4,6-Trichlorophenol ND 0.22 1.0 ug/l 2,4-Dichlorophenol ND 0.26 1.0 ug/l 2,4-Dimethylphenol ND 0.76 1.0 ug/l 2,4-Dinitrophenol ND 1.9 10 ug/l 2,4-Dinitrotoluene ND 0.46 1.0 ug/l 2,6-Dinitrotoluene ND 0.27 1.0 ug/l 2-Chloronaphthalene ND 0.45 1.0 ug/l	QC
2,4,6-Trichlorophenol ND 0.22 1.0 ug/l 2,4-Dichlorophenol ND 0.26 1.0 ug/l 2,4-Dimethylphenol ND 0.76 1.0 ug/l 2,4-Dinitrophenol ND 1.9 10 ug/l 2,4-Dinitrotoluene ND 0.46 1.0 ug/l 2,6-Dinitrotoluene ND 0.27 1.0 ug/l 2-Chloronaphthalene ND 0.45 1.0 ug/l	QC
2,4-Dichlorophenol ND 0.26 1.0 ug/l 2,4-Dimethylphenol ND 0.76 1.0 ug/l 2,4-Dinitrophenol ND 1.9 10 ug/l 2,4-Dinitrotoluene ND 0.46 1.0 ug/l 2,6-Dinitrotoluene ND 0.27 1.0 ug/l 2-Chloronaphthalene ND 0.45 1.0 ug/l	QC
2,4-Dimethylphenol ND 0.76 1.0 ug/l 2,4-Dinitrophenol ND 1.9 10 ug/l 2,4-Dinitrotoluene ND 0.46 1.0 ug/l 2,6-Dinitrotoluene ND 0.27 1.0 ug/l 2-Chloronaphthalene ND 0.45 1.0 ug/l	QC
2,4-Dinitrophenol ND 1.9 10 ug/l 2,4-Dinitrotoluene ND 0.46 1.0 ug/l 2,6-Dinitrotoluene ND 0.27 1.0 ug/l 2-Chloronaphthalene ND 0.45 1.0 ug/l	QC
2,4-Dinitrotoluene ND 0.46 1.0 ug/l 2,6-Dinitrotoluene ND 0.27 1.0 ug/l 2-Chloronaphthalene ND 0.45 1.0 ug/l	QC
2,6-Dinitrotoluene ND 0.27 1.0 ug/l 2-Chloronaphthalene ND 0.45 1.0 ug/l	QC
2-Chloronaphthalene ND 0.45 1.0 ug/l	QC
	QC
2-Chlorophenol ND 0.28 1.0 ua/l	QC
	QC

FINAL REPORT

Encina Wastewater Authority 6200 Avenida Encinas Carlsbad, CA 92011 Project Number: 2022 Annual Encina Influent Priority

Pollutant Scan

Reported:

03/24/2022 11:33

Project Manager: Jeff Parks

					Spike	Source		%REC		RPD	
Analyte	Result	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifi
atch: W2B1608 - EPA 625.1 (Continued)											
Blank (W2B1608-BLK2) 2-Methyl-4 6-dinitrophenol	ND	0.50	5.0		pared: 02/24/	22 Analyzed:	03/08/22				QC
2 many. 1,0 ammoprione.		0.50 0.26	5.0 1.0	ug/l							QC
•		2.5	5.0	ug/l							QC
-,-		0.36	1.0	ug/l							QC
, ,, ,		0.30	1.0	ug/l							QC
, e, e, , p		0.23	1.0	ug/l							QC
4-Chlorophenyl phenyl ether 4-Nitrophenol		1.2	5.0	ug/l ug/l							QC
Acenaphthene		0.38	1.0								QC
Acenaphthylene		0.35	1.0	ug/l							QC
, ,				ug/l							QC
		0.41	1.0	ug/l							
		3.2	10	ug/l							QC
()		0.19	1.0	ug/l							QC
Benzo (a) pyrene		0.39	1.0	ug/l							Q
Benzo (b) fluoranthene		0.46	1.0	ug/l							Q(
Benzo (g,h,i) perylene		0.42	2.0	ug/l							Q(
Benzo (k) fluoranthene		0.22	1.0	ug/l							Q(
Bis(2-chloroethoxy)methane		0.25	1.0	ug/l							Q(
Bis(2-chloroethyl)ether		0.27	1.0	ug/l							Q(
Bis(2-chloroisopropyl)ether		0.38	1.0	ug/l							Q(
Bis(2-ethylhexyl)phthalate		2.3	5.0	ug/l							Q(
Butyl benzyl phthalate		0.49	1.0	ug/l							Q
Chrysene	ND	0.19	1.0	ug/l							Q
Dibenzo (a,h) anthracene	ND	0.15	2.0	ug/l							Q
Diethyl phthalate	ND	0.35	1.0	ug/l							Q
Dimethyl phthalate	ND	0.18	1.0	ug/l							Q
Di-n-butyl phthalate	ND	0.34	1.0	ug/l							Q
Di-n-octyl phthalate	ND	0.46	1.0	ug/l							Q
Fluoranthene	ND	0.35	1.0	ug/l							QC
Fluorene	ND	0.35	1.0	ug/l							Q
Hexachlorobenzene	ND	0.49	1.0	ug/l							QC
Hexachlorobutadiene	ND	0.47	1.0	ug/l							QC
Hexachlorocyclopentadiene	ND	0.31	5.0	ug/l							QC
Hexachloroethane	ND	0.50	1.0	ug/l							QC
Indeno (1,2,3-cd) pyrene	ND	0.25	2.0	ug/l							QC
Isophorone	ND	0.21	1.0	ug/l							QC
Naphthalene	ND	0.49	1.0	ug/l							QC
Nitrobenzene	ND	0.36	1.0	ug/l							QC
N-Nitrosodimethylamine	ND	0.50	1.0	ug/l							QC
N-Nitrosodi-n-propylamine	ND	0.26	1.0	ug/l							QC
23108											Page 14

FINAL REPORT

Encina Wastewater Authority 6200 Avenida Encinas Carlsbad, CA 92011 Project Number: 2022 Annual Encina Influent Priority

Pollutant Scan

Reported: 03/24/2022 11:33

Project Manager: Jeff Parks

	K			C
--	---	--	--	---

2B23108

Quality Control Results

(Continued)

Page 15 of 30

Acid and Base/Neutral Extractables by GC/MS (Conti	nued)										
					Spike	Source		%REC		RPD	
Analyte	Result	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualif
atch: W2B1608 - EPA 625.1 (Continued)											
Blank (W2B1608-BLK2)	ND	0.40	4.0		pared: 02/24/2	2 Analyzed:	03/08/22	2			00
N-Nitrosodiphenylamine		0.19	1.0	ug/l							QC
Pentachlorophenol		0.40	1.0	ug/l							QC
Phenanthrene		0.32	1.0	ug/l							QC
Phenol		0.81	1.0	ug/l							Q(
Pyrene		0.25	1.0	ug/l							Q(
urrogate(s) 2,4,6-Tribromophenol				ug/l	40.0		110	25-120			Q
2-Fluorobiphenyl	18.6			ug/l	20.0		93	22-120			Q
2-Fluorophenol	21.3			ug/l	40.0		53	17-120			Q
Nitrobenzene-d5	15.4			ug/l	20.0		77	47-120			Q
Phenol-d5	12.1			ug/l	40.0		30	12-120			Q
Terphenyl-d14	25.0			ug/l	20.0		125	44-129			Q
											-
.CS (W2B1608-BS1) 1,2,4-Trichlorobenzene	16.6	0.49	1.0	Pre ug/l	pared: 02/24/2 20.0	2 Analyzed:	83 83	2 57-130			
1,2-Dichlorobenzene		0.46	1.0	ug/l	20.0		72	57-120			
1,3-Dichlorobenzene		0.42	1.0	ug/l	20.0		71	55-120			
1,4-Dichlorobenzene		0.48	1.0	ug/l	20.0		74	55-120			
2,4,6-Trichlorophenol		0.22	1.0	ug/l	20.0		93	52-129			
2,4-Dichlorophenol		0.26	1.0	ug/l	20.0		99	53-122			
2,4-Dimethylphenol		0.76	1.0	ug/l	20.0		73	42-120			
2,4-Dinitrophenol		1.9	10	ug/l	20.0		138	0.1-173			
2,4-Dinitrotoluene		0.46	1.0	ug/l	20.0		86	48-127			
2,6-Dinitrotoluene		0.27	1.0	ug/l	20.0		82	68-137			
2-Chloronaphthalene		0.45	1.0	ug/l	20.0		84	65-120			
2-Chlorophenol		0.28	1.0	ug/l	20.0		74	36-120			
2-Methyl-4,6-dinitrophenol		0.50	5.0	ug/l	20.0		110	53-130			
2-Nitrophenol		0.26	1.0	ug/l	20.0		87	45-167			
3,3'-Dichlorobenzidine	40.4	2.5	5.0	ug/l	20.0		97	8-213			
4-Bromophenyl phenyl ether		0.36	1.0	ug/l	20.0		102	65-120			
4-Chloro-3-methylphenol		0.23	1.0	ug/l	20.0		78	41-128			
4-Chlorophenyl phenyl ether		0.41	1.0	ug/l	20.0		86	38-145			
4-Nitrophenol		1.2	5.0	ug/l	20.0		31	13-129			
Acenaphthene		0.38	1.0	ug/l	20.0		87	60-132			
Acenaphthylene		0.35	1.0	ug/l	20.0		88	54-126			
Anthracene		0.33	1.0	ug/l	20.0		85	43-120			
Benzo (a) anthracene		0.41	1.0	ug/l	20.0		100	42-133			
Benzo (a) pyrene		0.19	1.0	_	20.0		86	32-148			
Benzo (b) fluoranthene				ug/l							ΛNI
Benzo (p) fluorantnene Benzo (g,h,i) perylene		0.46 0.42	1.0 2.0	ug/l ug/l	20.0 20.0		90 105	42-140 0.1-195			AN

FINAL REPORT

Encina Wastewater Authority 6200 Avenida Encinas Carlsbad, CA 92011 Project Number: 2022 Annual Encina Influent Priority

Pollutant Scan

Reported: 03/24/2022 11:33

Project Manager: Jeff Parks

Quality Control Results

					Spike	Source	%REC		RPD	
Analyte	Result	MDL	MRL	Units	Level	Result %REC	Limits	RPD	Limit	Qualifie
atch: W2B1608 - EPA 625.1 (Continued)										
.CS (W2B1608-BS1)				Pre	pared: 02/24/2	22 Analyzed: 03/03/	22			
Benzo (k) fluoranthene	18.5	0.22	1.0	ug/l	20.0	92	25-146			AN-I
Bis(2-chloroethoxy)methane	13.4	0.25	1.0	ug/l	20.0	67	49-165			
Bis(2-chloroethyl)ether	11.8	0.27	1.0	ug/l	20.0	59	43-126			
Bis(2-chloroisopropyl)ether	12.0	0.38	1.0	ug/l	20.0	60	63-139			Q-M
Bis(2-ethylhexyl)phthalate	18.6	2.3	5.0	ug/l	20.0	93	29-137			
Butyl benzyl phthalate	18.9	0.49	1.0	ug/l	20.0	95	0.1-140			
Chrysene	17.6	0.19	1.0	ug/l	20.0	88	44-140			
Dibenzo (a,h) anthracene	18.6	0.15	2.0	ug/l	20.0	93	0.1-200			
Diethyl phthalate	17.0	0.35	1.0	ug/l	20.0	85	0.1-120			
Dimethyl phthalate	17.4	0.18	1.0	ug/l	20.0	87	0.1-120			
Di-n-butyl phthalate	15.6	0.34	1.0	ug/l	20.0	78	8-120			
Di-n-octyl phthalate	18.5	0.46	1.0	ug/l	20.0	93	19-132			
Fluoranthene	21.1	0.35	1.0	ug/l	20.0	106	43-121			
Fluorene	18.5	0.35	1.0	ug/l	20.0	92	70-120			
Hexachlorobenzene	20.2	0.49	1.0	ug/l	20.0	101	8-142			
Hexachlorobutadiene	17.9	0.47	1.0	ug/l	20.0	90	38-120			
Hexachlorocyclopentadiene	14.1	0.31	5.0	ug/l	20.0	71	10-120			
Hexachloroethane	17.3	0.50	1.0	ug/l	20.0	86	55-120			
Indeno (1,2,3-cd) pyrene	19.3	0.25	2.0	ug/l	20.0	97	0.1-151			
Isophorone	12.1	0.21	1.0	ug/l	20.0	60	47-180			
Naphthalene	15.2	0.49	1.0	ug/l	20.0	76	36-120			
Nitrobenzene	12.8	0.36	1.0	ug/l	20.0	64	54-158			
N-Nitrosodimethylamine	8.52	0.50	1.0	ug/l	20.0	43	22-120			
N-Nitrosodi-n-propylamine	14.1	0.26	1.0	ug/l	20.0	71	14-198			
N-Nitrosodiphenylamine	15.4	0.19	1.0	ug/l	20.0	77	47-120			
Pentachlorophenol	19.0	0.40	1.0	ug/l	20.0	95	41-120			
Phenanthrene	17.6	0.32	1.0	ug/l	20.0	88	65-120			
Phenol	5.52	0.81	1.0	ug/l	20.0	28	17-120			
Pyrene	20.3	0.25	1.0	ug/l	20.0	101	70-120			
urrogate(s) 2,4,6-Tribromophenol	42.3			ua/l	40.0	106	25-120			
2-Fluorobiphenyl				ug/l	20.0	95	22-120			
2-Fluorophenol				ug/l	40.0	49	17-120			
				ug/l						
Nitrobenzene-d5 Phenol-d5				ug/l	20.0 40.0	75 31	47-120			
				ug/l	40.0 20.0	31	12-120 44-129			
Terphenyl-d14	22.6			ug/l	∠∪.∪	113	44-129			
LCS (W2B1608-BS2)	16.0	0.40	1.0			22 Analyzed: 03/08/				00
1,2,4-1110111010501120110	16.2	0.49	1.0	ug/l	20.0	81	57-130 57 120			QC-
1,2-Dichlorobenzene	14.1	0.46	1.0	ug/l	20.0	71	57-120			QC-

FINAL REPORT

Encina Wastewater Authority 6200 Avenida Encinas Carlsbad, CA 92011 Project Number: 2022 Annual Encina Influent Priority

Pollutant Scan

Reported: 03/24/2022 11:33

Project Manager: Jeff Parks

Quality Control Results

					Spike	Source		%REC		RPD	
Analyte	Result	MDL	MRL	Units	Level	Result %	6REC	Limits	RPD	Limit	Qualif
h: W2B1608 - EPA 625.1 (Continued)											
S (W2B1608-BS2)						22 Analyzed: 03/					
1,3-Dichlorobenzene		0.42	1.0	ug/l	20.0		70	55-120			QC
1,4-Dichlorobenzene		0.48	1.0	ug/l	20.0		74	55-120			Q
2,4,6-Trichlorophenol		0.22	1.0	ug/l	20.0		97	52-129			Q
2,4-Dichlorophenol		0.26	1.0	ug/l	20.0		95	53-122			Q
2,4-Dimethylphenol		0.76	1.0	ug/l	20.0		60	42-120			C
2,4-Dinitrophenol		1.9	10	ug/l	20.0		124	0.1-173			C
2,4-Dinitrotoluene		0.46	1.0	ug/l	20.0		90	48-127			C
2,6-Dinitrotoluene		0.27	1.0	ug/l	20.0		86	68-137			C
2-Chloronaphthalene		0.45	1.0	ug/l	20.0		85	65-120			C
2-Chlorophenol		0.28	1.0	ug/l	20.0		74	36-120			G
2-Methyl-4,6-dinitrophenol		0.50	5.0	ug/l	20.0		117	53-130			C
?-Nitrophenol		0.26	1.0	ug/l	20.0		87	45-167			(
3,3'-Dichlorobenzidine		2.5	5.0	ug/l	20.0		127	8-213			(
l-Bromophenyl phenyl ether		0.36	1.0	ug/l	20.0		108	65-120			(
-Chloro-3-methylphenol		0.23	1.0	ug/l	20.0		79	41-128			(
-Chlorophenyl phenyl ether		0.41	1.0	ug/l	20.0		85	38-145			(
-Nitrophenol	8.33	1.2	5.0	ug/l	20.0		42	13-129			(
cenaphthene		0.38	1.0	ug/l	20.0		89	60-132			(
cenaphthylene	18.3	0.35	1.0	ug/l	20.0		91	54-126			(
ınthracene	16.7	0.41	1.0	ug/l	20.0		84	43-120			(
Benzo (a) anthracene	25.5	0.19	1.0	ug/l	20.0	•	127	42-133			(
Benzo (a) pyrene	18.9	0.39	1.0	ug/l	20.0		95	32-148			(
Benzo (b) fluoranthene	20.0	0.46	1.0	ug/l	20.0	•	100	42-140			Q(A
enzo (g,h,i) perylene	19.9	0.42	2.0	ug/l	20.0		100	0.1-195			(
Benzo (k) fluoranthene	- 20.0	0.22	1.0	ug/l	20.0	•	100	25-146			Q
sis(2-chloroethoxy)methane	12.8	0.25	1.0	ug/l	20.0		64	49-165			A
sis(2-chloroethyl)ether		0.27	1.0	ug/l	20.0		59	43-126			
sis(2-chloroisopropyl)ether		0.38	1.0	ug/l	20.0		62	63-139			Q-
				-							
Bis(2-ethylhexyl)phthalate		2.3	5.0	ug/l	20.0		119	29-137			(
Butyl benzyl phthalate		0.49	1.0	ug/l	20.0		115	0.1-140			
Chrysene		0.19	1.0	ug/l	20.0		89	44-140			(
bibenzo (a,h) anthracene		0.15	2.0	ug/l	20.0		94	0.1-200			C
iethyl phthalate		0.35	1.0	ug/l	20.0		89	0.1-120			(
Dimethyl phthalate		0.18	1.0	ug/l	20.0		88	0.1-120			(
Di-n-butyl phthalate		0.34	1.0	ug/l	20.0		81	8-120			(
Di-n-octyl phthalate		0.46	1.0	ug/l	20.0		98	19-132			C
luoranthene		0.35	1.0	ug/l	20.0		113	43-121			C
-luorene	18.9	0.35	1.0	ug/l	20.0		94	70-120			C

FINAL REPORT

Encina Wastewater Authority 6200 Avenida Encinas Carlsbad, CA 92011

2B23108

Project Number: 2022 Annual Encina Influent Priority

Pollutant Scan

Reported: 03/24/2022 11:33

Project Manager: Jeff Parks

Quality Control Results

(Continued)

Page 18 of 30

					Spike	Source		%REC		RPD	
Analyte R	esult	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
atch: W2B1608 - EPA 625.1 (Continued)											
LCS (W2B1608-BS2)				Droi	pared: 02/24/2	22 Analyzed	03/08/2	2			
	21.8	0.49	1.0	ug/l	20.0	.z Anaryzea.	109	8-142			QC-
Hexachlorobutadiene	17.9	0.47	1.0	ug/l	20.0		89	38-120			QC-
Hexachlorocyclopentadiene	12.1	0.31	5.0	ug/l	20.0		61	10-120			QC-
Hexachloroethane	16.9	0.50	1.0	ug/l	20.0		85	55-120			QC-
Indeno (1,2,3-cd) pyrene	19.4	0.25	2.0	ug/l	20.0		97	0.1-151			QC-
Isophorone	11.9	0.21	1.0	ug/l	20.0		60	47-180			QC
Naphthalene	14.9	0.49	1.0	ug/l	20.0		75	36-120			QC
Nitrobenzene	12.7	0.36	1.0	ug/l	20.0		63	54-158			QC-
N-Nitrosodimethylamine	8.11	0.50	1.0	ug/l	20.0		41	22-120			QC-
N-Nitrosodi-n-propylamine	13.6	0.26	1.0	ug/l	20.0		68	14-198			QC-
N-Nitrosodiphenylamine	15.8	0.19	1.0	ug/l	20.0		79	47-120			QC
Pentachlorophenol	22.2	0.40	1.0	ug/l	20.0		111	41-120			QC
Phenanthrene	17.6	0.32	1.0	ug/l	20.0		88	65-120			QC
Phenol	5.37	0.81	1.0	ug/l	20.0		27	17-120			QC
Pyrene	23.0	0.25	1.0	ug/l	20.0		115	70-120			QC
Surrogate(s)											
, ,	46.0			ug/l	40.0		115	25-120			QC
2-Fluorobiphenyl	19.0			ug/l	20.0		95	22-120			QC
· · · · · · · ·	20.6			ug/l	40.0		52	17-120			QC
Nitrobenzene-d5				ug/l	20.0		74	47-120			QC
Phenol-d5	12.1			ug/l	40.0		30	12-120			QC
Terphenyl-d14	24.5			ug/l	20.0		123	44-129			QC
LCS Dup (W2B1608-BSD1)				Pre	oared: 02/24/2	22 Analyzed:	03/03/2	2			
1,2,4-Trichlorobenzene	17.3	0.49	1.0	ug/l	20.0		86	57-130	4	30	
1,2-Dichlorobenzene	15.1	0.46	1.0	ug/l	20.0		75	57-120	5	30	
1,3-Dichlorobenzene	14.7	0.42	1.0	ug/l	20.0		73	55-120	3	30	
1,4-Dichlorobenzene	15.3	0.48	1.0	ug/l	20.0		76	55-120	3	30	
2,4,6-Trichlorophenol	19.8	0.22	1.0	ug/l	20.0		99	52-129	6	30	
2,4-Dichlorophenol	20.6	0.26	1.0	ug/l	20.0		103	53-122	4	30	
2,4-Dimethylphenol	15.3	0.76	1.0	ug/l	20.0		76	42-120	4	30	
2,4-Dinitrophenol	30.2	1.9	10	ug/l	20.0		151	0.1-173	9	30	
2,4-Dinitrotoluene	18.3	0.46	1.0	ug/l	20.0		91	48-127	6	30	
2,6-Dinitrotoluene	17.8	0.27	1.0	ug/l	20.0		89	68-137	9	30	
2-Chloronaphthalene	17.6	0.45	1.0	ug/l	20.0		88	65-120	4	30	
2-Chlorophenol	15.4	0.28	1.0	ug/l	20.0		77	36-120	3	30	
2-Methyl-4,6-dinitrophenol	24.1	0.50	5.0	ug/l	20.0		121	53-130	10	30	
2-Nitrophenol	18.3	0.26	1.0	ug/l	20.0		92	45-167	6	30	
3,3'-Dichlorobenzidine	18.2	2.5	5.0	ug/l	20.0		91	8-213	7	30	
4-Bromophenyl phenyl ether	21.7	0.36	1.0	ug/l	20.0		108	65-120	6	30	

FINAL REPORT

Encina Wastewater Authority 6200 Avenida Encinas Carlsbad, CA 92011 Project Number: 2022 Annual Encina Influent Priority

Pollutant Scan

Reported: 03/24/2022 11:33

Project Manager: Jeff Parks

Quality Control Results

				Spike	Source		%REC		RPD	
Result	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
			Pre	-	22 Analyzed:					
			ug/l							
	0.41	1.0	ug/l			92	38-145	7	30	
6.47	1.2	5.0	ug/l	20.0		32	13-129	4	30	
18.8	0.38	1.0	ug/l	20.0		94	60-132	7	30	
19.3	0.35	1.0	ug/l	20.0		96	54-126	9	30	
18.1	0.41	1.0	ug/l	20.0		91	43-120	7	30	
19.5	0.19	1.0	ug/l	20.0		98	42-133	2	30	
17.0	0.39	1.0	ug/l	20.0		85	32-148	1	30	
17.8	0.46	1.0	ug/l	20.0		89	42-140	1	30	AN-I
21.7	0.42	2.0	ug/l	20.0		109	0.1-195	3	30	
18.5	0.22	1.0	ug/l	20.0		92	25-146	0.06	30	AN-I
14.2	0.25	1.0	ug/l	20.0		71	49-165	5	30	
12.4	0.27	1.0	ug/l	20.0		62	43-126	5	30	
12.6	0.38	1.0	ug/l	20.0		63	63-139	4	30	
18.8	2.3	5.0	ug/l	20.0		94	29-137	0.7	30	
19.4	0.49	1.0	ug/l	20.0		97	0.1-140	2	30	
18.7	0.19	1.0	ug/l	20.0		93	44-140	6	30	
19.3	0.15	2.0	ug/l	20.0		97	0.1-200	4	30	
17.9	0.35	1.0	ug/l	20.0		90	0.1-120	5	30	
18.0	0.18	1.0	ug/l	20.0		90	0.1-120	3	30	
16.6	0.34	1.0	ug/l	20.0		83	8-120	6	30	
18.1	0.46	1.0	ug/l	20.0		90	19-132	3	30	
21.9	0.35	1.0	ug/l	20.0		110	43-121	4	30	
19.6	0.35	1.0	ug/l	20.0		98	70-120	6	30	
21.2	0.49	1.0	ug/l	20.0		106	8-142	5	30	
18.4	0.47	1.0	ug/l	20.0		92	38-120	3	30	
15.2	0.31	5.0	ug/l	20.0		76	10-120	7	30	
17.7	0.50	1.0	ug/l	20.0		88	55-120	2	30	
20.2	0.25	2.0	ug/l	20.0		101	0.1-151	4	30	
12.7			-			63		5	30	
16.1	0.49		· ·			81		6		
			· ·							
			· ·							
			-							
			-							
			· ·							
			-							
			-							
			-							
	16.6 18.4 6.47 18.8 19.3 18.1 19.5 17.0 17.8 21.7 18.5 14.2 12.4 12.6 18.8 19.4 18.7 19.3 17.9 18.0 16.6 18.1 21.9 19.6 21.2 18.4 15.2	16.6 0.23 18.4 0.41 6.47 1.2 18.8 0.38 19.3 0.35 18.1 0.41 19.5 0.19 17.0 0.39 17.8 0.46 21.7 0.42 18.5 0.22 14.2 0.25 12.4 0.27 12.6 0.38 18.8 2.3 19.4 0.49 18.7 0.19 19.3 0.15 17.9 0.35 18.0 0.18 16.6 0.34 18.1 0.46 21.9 0.35 19.6 0.35 21.2 0.49 18.4 0.47 15.2 0.31 17.7 0.50 20.2 0.25 12.7 0.21 16.1 0.49 13.6 0.36 8.73 0.50 14.8 0.26 16.0 0.19 20.6 0.40 18.7 0.32 5.59 0.81	16.6 0.23 1.0 18.4 0.41 1.0 6.47 1.2 5.0 18.8 0.38 1.0 19.3 0.35 1.0 18.1 0.41 1.0 19.5 0.19 1.0 17.0 0.39 1.0 17.8 0.46 1.0 21.7 0.42 2.0 18.5 0.22 1.0 14.2 0.25 1.0 12.4 0.27 1.0 12.6 0.38 1.0 18.8 2.3 5.0 19.4 0.49 1.0 18.7 0.19 1.0 19.3 0.15 2.0 17.9 0.35 1.0 18.0 0.18 1.0 16.6 0.34 1.0 18.1 0.46 1.0 21.9 0.35 1.0 18.1 0.46 1.0 21.9 0.35 1.0 18.4 0.47 1.0 15.2 0.31 5.0 17.7 0.50 1.0 18.4 0.47 1.0 15.2 0.31 5.0 17.7 0.50 1.0 18.6 0.36 1.0 17.7 0.50 1.0 18.7 0.19 1.0 18.4 0.47 1.0 15.2 0.31 5.0 17.7 0.50 1.0 18.4 0.47 1.0 15.2 0.31 5.0 17.7 0.50 1.0 18.4 0.47 1.0 15.2 0.31 5.0 17.7 0.50 1.0 18.4 0.47 1.0 15.2 0.31 5.0 17.7 0.50 1.0 18.4 0.47 1.0 15.2 0.31 5.0 17.7 0.50 1.0 18.4 0.47 1.0 15.2 0.31 5.0 17.7 0.50 1.0 18.4 0.47 1.0 15.2 0.31 5.0 17.7 0.50 1.0 18.4 0.47 1.0 15.2 0.31 5.0 17.7 0.50 1.0 18.4 0.47 1.0 15.2 0.31 5.0 17.7 0.50 1.0 18.4 0.47 1.0 15.2 0.31 5.0 17.7 0.50 1.0 18.4 0.47 1.0 15.2 0.31 5.0 17.7 0.50 1.0 18.7 0.32 1.0 18.7 0.32 1.0 18.7 0.32 1.0	Pre 16.6 0.23 1.0 ug/l 18.4 0.41 1.0 ug/l 6.47 1.2 5.0 ug/l 18.8 0.38 1.0 ug/l 19.3 0.35 1.0 ug/l 19.5 0.19 1.0 ug/l 17.0 0.39 1.0 ug/l 17.8 0.46 1.0 ug/l 18.5 0.22 1.0 ug/l 14.2 0.25 1.0 ug/l 12.4 0.27 1.0 ug/l 12.6 0.38 1.0 ug/l 18.7 0.19 1.0 ug/l 19.3 0.15 2.0 ug/l 18.1 0.46 1.0 ug/l 19.3 0.15 2.0 ug/l 19.3 0.15 2.0 ug/l 18.4 0.46 1.0 ug/l 19.5 0.19 1.0 ug/l 19.6 0.35 1.0 ug/l 18.7 0.19 1.0 ug/l 18.8 1.0 ug/l 19.9 0.35 1.0 ug/l 18.1 0.46 1.0 ug/l 18.2 0.38 1.0 ug/l 18.3 1.0 ug/l 18.4 0.47 1.0 ug/l 18.4 0.47 1.0 ug/l 18.5 0.35 1.0 ug/l 18.6 0.35 1.0 ug/l 19.6 0.35 1.0 ug/l 19.6 0.35 1.0 ug/l 19.6 0.35 1.0 ug/l 18.7 0.21 1.0 ug/l 18.4 0.47 1.0 ug/l 18.5 0.36 1.0 ug/l 18.6 0.36 1.0 ug/l 18.7 0.21 1.0 ug/l 18.7 0.21 1.0 ug/l 18.7 0.21 1.0 ug/l 18.7 0.21 1.0 ug/l 18.7 0.32 1.0 ug/l 18.7 0.32 1.0 ug/l 18.7 0.32 1.0 ug/l 18.7 0.32 1.0 ug/l	Prepared: 02/24/2 16.6 0.23 1.0 ug/l 20.0 18.4 0.41 1.0 ug/l 20.0 6.47 1.2 5.0 ug/l 20.0 18.8 0.38 1.0 ug/l 20.0 19.3 0.35 1.0 ug/l 20.0 19.5 0.19 1.0 ug/l 20.0 17.0 0.39 1.0 ug/l 20.0 18.5 0.22 1.0 ug/l 20.0 14.2 0.25 1.0 ug/l 20.0 12.4 0.27 1.0 ug/l 20.0 18.8 2.3 5.0 ug/l 20.0 18.8 2.3 5.0 ug/l 20.0 18.7 0.19 1.0 ug/l 20.0 18.8 1.0 ug/l 20.0 12.6 0.38 1.0 ug/l 20.0 18.8 2.3 5.0 ug/l 20.0 18.7 0.19 1.0 ug/l 20.0 18.7 0.19 1.0 ug/l 20.0 18.7 0.19 1.0 ug/l 20.0 18.8 2.3 5.0 ug/l 20.0 18.8 1.0 ug/l 20.0 19.4 0.49 1.0 ug/l 20.0 19.3 0.15 2.0 ug/l 20.0 18.0 0.18 1.0 ug/l 20.0 18.1 0.46 1.0 ug/l 20.0 18.2 0.35 1.0 ug/l 20.0 18.3 0.15 2.0 ug/l 20.0 18.4 0.47 1.0 ug/l 20.0 18.5 0.25 2.0 ug/l 20.0 18.6 0.35 1.0 ug/l 20.0 18.7 0.19 1.0 ug/l 20.0 18.8 1.0 ug/l 20.0 18.9 0.35 1.0 ug/l 20.0 18.1 0.46 1.0 ug/l 20.0 18.1 0.46 1.0 ug/l 20.0 18.2 0.31 5.0 ug/l 20.0 18.3 0.55 1.0 ug/l 20.0 18.4 0.47 1.0 ug/l 20.0 18.5 0.35 1.0 ug/l 20.0 18.6 0.35 1.0 ug/l 20.0 18.7 0.50 1.0 ug/l 20.0 18.7 0.50 1.0 ug/l 20.0 18.8 0.36 1.0 ug/l 20.0 18.9 0.35 1.0 ug/l 20.0 18.1 0.49 1.0 ug/l 20.0 18.2 0.31 5.0 ug/l 20.0 18.3 0.36 1.0 ug/l 20.0 18.4 0.47 1.0 ug/l 20.0 18.5 0.36 1.0 ug/l 20.0 18.7 0.50 1.0 ug/l 20.0 18.7 0.50 1.0 ug/l 20.0 18.7 0.21 1.0 ug/l 20.0 18.8 0.36 1.0 ug/l 20.0	Prepared: 02/24/22 Analyzed: 16.6 0.23 1.0 ug/l 20.0 18.4 0.41 1.0 ug/l 20.0 6.47 1.2 5.0 ug/l 20.0 18.8 0.38 1.0 ug/l 20.0 19.3 0.35 1.0 ug/l 20.0 19.3 0.35 1.0 ug/l 20.0 19.5 0.19 1.0 ug/l 20.0 17.0 0.39 1.0 ug/l 20.0 18.5 0.22 1.0 ug/l 20.0 14.2 0.25 1.0 ug/l 20.0 12.4 0.27 1.0 ug/l 20.0 18.8 2.3 5.0 ug/l 20.0 19.4 0.15 20.0 19.4 0.15 0.19 1.0 ug/l 20.0 19.4 0.15 0.19 1.0 ug/l 20.0 19.4 0.15 0.15 0.19 1.0 ug/l 20.0 18.7 0.19 1.0 ug/l 20.0 18.7 0.19 1.0 ug/l 20.0 19.3 0.15 2.0 ug/l 20.0 19.3 0.15 2.0 ug/l 20.0 18.0 0.18 1.0 ug/l 20.0 18.1 0.46 1.0 ug/l 20.0 19.3 1.0 ug/l 20.0 19.4 0.35 1.0 ug/l 20.0 19.6 0.35 1.0 ug/l 20.0 12.7 0.21 1.0 ug/l 20.0 13.6 0.36 1.0 ug/l 20.0 13.6 0.36 1.0 ug/l 20.0 14.8 0.26 1.0 ug/l 20.0 18.7 0.55 0.81 1.0 ug/l 20.0 18.7 0.55 0.81 1.0 ug/l 20.0 18.7 0.55 0.0 ug/l 20.0 18.7 0.55 0.0 ug/l 20.0 16.0 0.19 1.0 ug/l 20.0 16.0 0.40 1.0 ug/	Prepared: 02/24/22 Analyzed: 03/03/23	Prepared: 02/24/22 Analyzed: 03/03/22		Prepared: 02/24/22 Analyzed: 03/03/22 10 ug/l 20.0 83 41-128 7 30 18.4 0.41 1.0 ug/l 20.0 92 38-145 7 30 64.7 1.2 5.0 ug/l 20.0 94 60-132 7 30 18.8 0.38 1.0 ug/l 20.0 94 60-132 7 30 19.3 0.35 1.0 ug/l 20.0 96 54-126 9 30 18.1 0.41 1.0 ug/l 20.0 96 54-126 9 30 18.1 0.41 1.0 ug/l 20.0 98 42-133 2 30 17.0 0.39 1.0 ug/l 20.0 85 32-148 1 30 17.8 0.46 1.0 ug/l 20.0 85 32-148 1 30 17.8 0.46 1.0 ug/l 20.0 89 42-140 1 30 21.7 0.42 2.0 ug/l 20.0 92 25-146 0.066 30 18.5 0.22 1.0 ug/l 20.0 92 25-146 0.066 30 14.2 0.25 1.0 ug/l 20.0 92 25-146 0.066 30 12.4 0.27 1.0 ug/l 20.0 62 43-126 5 30 12.6 0.38 1.0 ug/l 20.0 62 43-126 5 30 12.6 0.38 1.0 ug/l 20.0 94 29-137 0.7 30 19.4 0.49 1.0 ug/l 20.0 97 0.1-140 2 30 19.4 0.49 1.0 ug/l 20.0 97 0.1-140 6 30 19.3 0.15 2.0 ug/l 20.0 97 0.1-200 4 30 19.3 0.15 2.0 ug/l 20.0 97 0.1-200 4 30 19.3 0.15 2.0 ug/l 20.0 97 0.1-200 4 30 19.3 0.15 2.0 ug/l 20.0 99 0.1-120 5 30 18.7 0.95 1.0 ug/l 20.0 99 0.1-120 5 30 18.1 0.46 1.0 ug/l 20.0 90 0.1-120 5 30 18.1 0.46 1.0 ug/l 20.0 99 0.1-120 5 30 18.1 0.46 1.0 ug/l 20.0 99 0.1-120 5 30 18.1 0.46 1.0 ug/l 20.0 99 0.1-120 5 30 18.1 0.46 1.0 ug/l 20.0 99 0.1-120 5 30 18.1 0.46 1.0 ug/l 20.0 99 0.1-120 5 30 18.1 0.46 1.0 ug/l 20.0 99 0.1-120 5 30 18.1 0.46 1.0 ug/l 20.0 99 0.1-120 5 30 18.1 0.46 1.0 ug/l 20.0 99 0.1-120 6 30 18.1 0.46 1.0 ug/l 20.0 98 70-120 6 30 18.1 0.46 1.0 ug/l 20.0 98 70-120 6 30 19.1 1.0 ug/l 20.0 98 70-120 6 30

FINAL REPORT

Encina Wastewater Authority 6200 Avenida Encinas Carlsbad, CA 92011 Project Number: 2022 Annual Encina Influent Priority

Pollutant Scan

Project Manager: Jeff Parks

Reported:

03/24/2022 11:33

Quality Control Results

Acid and Base/Neutral Extractables by GC/MS (Continued)										
Anabas		MP	MO	Halt.	Spike	Source % REC	%REC	000	RPD	0
Analyte F Satch: W2B1608 - EPA 625.1 (Continued)	Result	MDL	MRL	Units	Level	Result %REC	Limits	RPD	Limit	Qualifi
LCS Dup (W2B1608-BSD1)				Pre	nared: 02/24/2	2 Analyzed: 03/03/	2			
Surrogate(s)						-				
, ,	44.5			ug/l	40.0	111	25-120			
· · · · · · · ·	19.9			ug/l	20.0	99	22-120			
T	19.5			ug/l	40.0	49	17-120			
	16.0			ug/l	20.0	80	47-120			
	12.9			ug/l	40.0	32	12-120			
Terphenyl-d14	23.0			ug/l	20.0	115	44-129			
LCS Dup (W2B1608-BSD2)	40.0	0.40	4.0			22 Analyzed: 03/08/		4	20	00
	16.8	0.49	1.0	ug/l	20.0	84	57-130	4	30	QC
,	14.7	0.46	1.0	ug/l	20.0	74	57-120 55-120	4	30	QC
1,0 2.0.110.020.120.10	14.3	0.42	1.0	ug/l	20.0	72	55-120 55-120	2	30	QC
.,	15.2	0.48	1.0	ug/l	20.0	76	55-120	2	30	QC
2,1,0 111011010101	20.1	0.22	1.0	ug/l	20.0	100	52-129	4	30	QC
, ,	19.9	0.26	1.0	ug/l	20.0	100	53-122	5	30	QC
, , , , ,	11.8	0.76	1.0	ug/l	20.0	59	42-120	2	30	QC
, ,	27.6	1.9	10	ug/l	20.0	138	0.1-173	11	30	QC
,	19.2	0.46	1.0	ug/l	20.0	96	48-127	7	30	QC
) -	18.3	0.27	1.0	ug/l	20.0	92	68-137	6	30	QC
- !	17.8	0.45	1.0	ug/l	20.0	89	65-120	5	30	QC
	15.1	0.28	1.0	ug/l	20.0	76	36-120	3	30	QC
y /- 1	25.4	0.50	5.0	ug/l	20.0	127	53-130	8	30	QC
'	17.7	0.26	1.0	ug/l	20.0	88	45-167	2	30	QC
	26.2	2.5	5.0	ug/l	20.0	131	8-213	3	30	QC
1 71 7	22.6	0.36	1.0	ug/l	20.0	113	65-120	4	30	QC
- 71	16.5	0.23	1.0	ug/l	20.0	83	41-128	4	30	QC
- 1 71 7	18.3	0.41	1.0	ug/l	20.0	91	38-145	7	30	QC
·	8.32	1.2	5.0	ug/l	20.0	42	13-129	0.09	30	QC
'	18.6	0.38	1.0	ug/l	20.0	93	60-132	4	30	QC
' '	19.4	0.35	1.0	ug/l	20.0	97	54-126	6	30	QC
	17.5	0.41	1.0	ug/l	20.0	88	43-120	5	30	QC
	25.5	0.19	1.0	ug/l	20.0	128	42-133	0.2	30	QC
() 1 7	19.7	0.39	1.0	ug/l	20.0	99	32-148	4	30	QC
Benzo (b) fluoranthene	20.9	0.46	1.0	ug/l	20.0	105	42-140	4	30	QC- AN-
Benzo (g,h,i) perylene	20.4	0.42	2.0	ug/l	20.0	102	0.1-195	3	30	QC
Benzo (k) fluoranthene	20.8	0.22	1.0	ug/l	20.0	104	25-146	4	30	QC-: AN-
Bis(2-chloroethoxy)methane	13.8	0.25	1.0	ug/l	20.0	69	49-165	7	30	QC
Bis(2-chloroethyl)ether	12.3	0.27	1.0	ug/l	20.0	61	43-126	4	30	QC
Bis(2-chloroisopropyl)ether	12.8	0.38	1.0	ug/l	20.0	64	63-139	4	30	QC

FINAL REPORT

Encina Wastewater Authority 6200 Avenida Encinas Carlsbad, CA 92011 Project Number: 2022 Annual Encina Influent Priority

Pollutant Scan

Reported: 03/24/2022 11:33

Project Manager: Jeff Parks

					Spike	Source		%REC		RPD	
Analyte Re	esult	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualific
tch: W2B1608 - EPA 625.1 (Continued)											
.CS Dup (W2B1608-BSD2)					pared: 02/24/	22 Analyzed:					
, , , , ,	24.3	2.3	5.0	ug/l	20.0		121	29-137	2	30	QC-
, , , ,	23.8	0.49	1.0	ug/l	20.0		119	0.1-140	3	30	QC-
Chrysene		0.19	1.0	ug/l	20.0		94	44-140	6	30	QC-
Dibenzo (a,h) anthracene	19.7	0.15	2.0	ug/l	20.0		98	0.1-200	4	30	QC
Diethyl phthalate	18.6	0.35	1.0	ug/l	20.0		93	0.1-120	4	30	QC
Dimethyl phthalate	18.3	0.18	1.0	ug/l	20.0		92	0.1-120	4	30	QC
Di-n-butyl phthalate	17.0	0.34	1.0	ug/l	20.0		85	8-120	4	30	QC
Di-n-octyl phthalate	19.9	0.46	1.0	ug/l	20.0		100	19-132	2	30	QC
Fluoranthene	23.6	0.35	1.0	ug/l	20.0		118	43-121	4	30	QC
Fluorene	19.9	0.35	1.0	ug/l	20.0		99	70-120	5	30	QC
Hexachlorobenzene	22.5	0.49	1.0	ug/l	20.0		113	8-142	3	30	QC
Hexachlorobutadiene	18.5	0.47	1.0	ug/l	20.0		92	38-120	3	30	QC
Hexachlorocyclopentadiene	13.1	0.31	5.0	ug/l	20.0		65	10-120	8	30	QC
Hexachloroethane	17.3	0.50	1.0	ug/l	20.0		87	55-120	2	30	QC
Indeno (1,2,3-cd) pyrene	20.2	0.25	2.0	ug/l	20.0		101	0.1-151	4	30	QC
Isophorone	12.5	0.21	1.0	ug/l	20.0		62	47-180	5	30	QC
Naphthalene	15.9	0.49	1.0	ug/l	20.0		79	36-120	6	30	QC
Nitrobenzene	13.5	0.36	1.0	ug/l	20.0		68	54-158	6	30	QC
N-Nitrosodimethylamine	7.90	0.50	1.0	ug/l	20.0		40	22-120	3	30	QC
N-Nitrosodi-n-propylamine	14.6	0.26	1.0	ug/l	20.0		73	14-198	7	30	QC
N-Nitrosodiphenylamine	16.5	0.19	1.0	ug/l	20.0		83	47-120	4	30	QC
Pentachlorophenol	24.8	0.40	1.0	ug/l	20.0		124	41-120	11	30	Q-08, QC
Phenanthrene	18.6	0.32	1.0	ug/l	20.0		93	65-120	5	30	QC
Phenol	5.37	0.81	1.0	ug/l	20.0		27	17-120	0.09	30	QC
Pyrene	23.6	0.25	1.0	ug/l	20.0		118	70-120	3	30	QC
ırrogate(s)											
, , ,	47.6			ug/l	40.0		119	25-120			QC
,	19.6			ug/l	20.0		98	22-120			QC
	20.0			ug/l	40.0		50	17-120			QC
	15.7			ug/l	20.0		78	47-120			QC
Phenol-d5	12.3			ug/l	40.0		31	12-120			QC

FINAL REPORT

Encina Wastewater Authority 6200 Avenida Encinas Carlsbad, CA 92011

2B23108

Project Number: 2022 Annual Encina Influent Priority

Pollutant Scan

Reported: 03/24/2022 11:33

Project Manager: Jeff Parks

(Continued)

Page 22 of 30

					Spike	Source		%REC		RPD	
Analyte	Result	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifi
tch: W2B1698 - EPA 608.3											
Blank (W2B1698-BLK1)				Prej	oared: 02/25/2	22 Analyzed:	03/04/22				
4,4′-DDD	ND	0.00070	0.050	ug/l							
4,4´-DDE		0.00070	0.050	ug/l							
4,4'-DDT	=	0.0011	0.050	ug/l							
Aldrin	ND	0.0010	0.050	ug/l							
alpha-BHC	ND	0.0011	0.050	ug/l							
Aroclor 1016	ND	0.029	1.0	ug/l							
Aroclor 1221	ND	0.060	1.0	ug/l							
Aroclor 1232	ND	0.15	1.0	ug/l							
Aroclor 1242	ND	0.095	1.0	ug/l							
Aroclor 1248	· · ND	0.083	1.0	ug/l							
Aroclor 1254	· · ND	0.040	1.0	ug/l							
Aroclor 1260	ND	0.055	1.0	ug/l							
beta-BHC	ND	0.0015	0.050	ug/l							
Chlordane (tech)	ND	0.043	0.50	ug/l							
delta-BHC	ND	0.0019	0.050	ug/l							
Dieldrin	ND	0.00080	0.050	ug/l							
Endosulfan I	ND	0.00090	0.050	ug/l							
Endosulfan II	ND	0.00070	0.050	ug/l							
Endosulfan sulfate	ND	0.0013	0.050	ug/l							
Endrin	ND	0.0017	0.050	ug/l							
Endrin aldehyde	ND	0.0019	0.050	ug/l							
gamma-BHC (Lindane)	· · · ND	0.00040	0.050	ug/l							
Heptachlor	0.000791	0.00060	0.050	ug/l							
Heptachlor epoxide	ND	0.00040	0.050	ug/l							
Methoxychlor	ND	0.0014	0.050	ug/l							
Toxaphene	ND	0.085	2.0	ug/l							
urrogate(s)											
Decachlorobiphenyl	0.0880			ug/l	0.100		88	33-133			
Tetrachloro-meta-xylene	0.0766			ug/l	0.100		77	32-130			
.CS (W2B1698-BS1)				Prej	oared: 02/25/2	22 Analyzed:	03/04/22				
4,4′-DDD		0.00070	0.050	ug/l	0.100		82	48-130			
4,4'-DDE		0.00070	0.050	ug/l	0.100		78	54-130			
4,4'-DDT	0.0943	0.0011	0.050	ug/l	0.100		94	46-137			
Aldrin	0.0736	0.0010	0.050	ug/l	0.100		74	54-130			
alpha-BHC		0.0011	0.050	ug/l	0.100		82	49-130			
beta-BHC	0.0817	0.0015	0.050	ug/l	0.100		82	39-130			
delta-BHC	0.0908	0.0019	0.050	ug/l	0.100		91	51-130			
Dieldrin	0.0734	0.00080	0.050	ug/l	0.100		73	58-130			
Endosulfan I	0.0756	0.00090	0.050	ug/l	0.100		76	57-141			

FINAL REPORT

Encina Wastewater Authority 6200 Avenida Encinas Carlsbad, CA 92011 Project Number: 2022 Annual Encina Influent Priority

Pollutant Scan

Reported: 03/24/2022 11:33

Project Manager: Jeff Parks

(Continued)

Chlorinated Pesticides and/or PCBs by GC/ECD (Cont	nuea)										
					Spike	Source		%REC		RPD	
Analyte	Result	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifi
atch: W2B1698 - EPA 608.3 (Continued)											
LCS (W2B1698-BS1) Endosulfan II	0.0827	0.00070	0.050	Pre ug/l	pared: 02/25/2 0.100	22 Analyzed:	03/04/2 2 83	2 22-171			
Endosulfan sulfate		0.00070	0.050	ug/l	0.100		98	38-132			
Endrin	0.000.	0.0013	0.050	ug/l	0.100		91	51-130			
Endrin aldehyde		0.0017	0.050	ū	0.100		72	18-130			
,		0.0019	0.050	ug/l	0.100		82	43-130			
· ,				ug/l							
Heptachlor epoxide		0.00060	0.050	ug/l	0.100		85	43-130			
		0.00040	0.050	ug/l	0.100		80	57-132			
,	0.0969	0.0014	0.050	ug/l	0.100		97	50-130			
Surrogate(s) Decachlorobiphenyl	0.0863			ug/l	0.100		86	33-133			
Tetrachloro-meta-xylene	0.0759			ug/l	0.100		76	32-130			
LCC Day (MODICO) DCD4)				Due	d- 02/25/2	2 Analysis	02/04/2				
LCS Dup (W2B1698-BSD1) 4.4´-DDD	0.0766	0.00070	0.050	ug/l	pared: 02/25/2 0.100	zz Analyzed:	03/04/2 <i>1</i> 77	48-130	7	30	
4,4´-DDE	0.0704	0.00070	0.050	ug/l	0.100		70	54-130	11	30	
4,4´-DDT	0.0867	0.0011	0.050	ug/l	0.100		87	46-137	8	30	
Aldrin	0.0667	0.0010	0.050	ug/l	0.100		67	54-130	10	30	
alpha-BHC	0.0719	0.0011	0.050	ug/l	0.100		72	49-130	13	30	
beta-BHC		0.0015	0.050	ug/l	0.100		76	39-130	7	30	
delta-BHC	0.0660	0.0019	0.050	ug/l	0.100		66	51-130	32	30	Q-1:
Dieldrin	0.0671	0.00080	0.050	ug/l	0.100		67	58-130	9	30	
Endosulfan I	0.0680	0.00090	0.050	ug/l	0.100		68	57-141	11	30	
Endosulfan II	0.0773	0.00070	0.050	ug/l	0.100		77	22-171	7	30	
Endosulfan sulfate	0.0773	0.0013	0.050	ug/l	0.100		77	38-132	24	30	
Endrin	0.0820	0.0017	0.050	ug/l	0.100		82	51-130	10	30	
Endrin aldehyde		0.0019	0.050	ug/l	0.100		68	18-130	5	30	
gamma-BHC (Lindane)		0.00040	0.050	ug/l	0.100		65	43-130	24	30	
Heptachlor		0.00060	0.050	ug/l	0.100		77	43-130	10	30	
Heptachlor epoxide		0.00040	0.050	ug/l	0.100		74	57-132	7	30	
Methoxychlor		0.0014	0.050	ug/l	0.100		79	50-130	20	30	
Surrogate(s)				J							
Decachlorobiphenyl	0.0805			ug/l	0.100		80	33-133			
Tetrachloro-meta-xylene	0.0685			ug/l	0.100		68	32-130			

FINAL REPORT

Encina Wastewater Authority 6200 Avenida Encinas Carlsbad, CA 92011 Project Number: 2022 Annual Encina Influent Priority

Pollutant Scan

Reported: 03/24/2022 11:33

Project Manager: Jeff Parks

Quality Control Results

(Continued)

Volatile Organic Compounds by P&T and GC/MS											
					Spike	Source		%REC		RPD	
·	Result	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
atch: W2B1715 - EPA 624.1											
Blank (W2B1715-BLK1) 1,1,1-Trichloroethane	- ND	0.31	1.0	ua/l	Prepared & A	Analyzed: 02/	25/22				
	- ND	0.38		ug/l							
, , ,			1.0	ug/l							
., .,	- ND	0.42	1.0	ug/l							
i, i Distinct Satisfies	- ND	0.32	1.0	ug/l							
1,1-Dichloroethene	- ND	0.32	1.0	ug/l							
1,2-Dichloroethane	- ND	0.54	1.0	ug/l							
1,2-Dichloropropane	- ND	0.42	1.0	ug/l							
2-Butanone	- ND	2.0	5.0	ug/l							
2-Chloroethyl vinyl ether	- ND	0.19	1.0	ug/l							
2-Hexanone	- ·ND	0.46	5.0	ug/l							
4-Methyl-2-pentanone		0.59	5.0	ug/l							
Acetone		1.6	5.0	ug/l							J
Acrolein	- ND	1.2	5.0	ug/l							
Acrylonitrile	- ND	0.63	2.0	ug/l							
Benzene	- ND	0.47	1.0	ug/l							
Bromodichloromethane	- ND	0.44	1.0	ug/l							
Bromoform	- ND	0.27	1.0	ug/l							
Bromomethane		0.50	1.0	ug/l							
Carbon Disulfide	0.334	0.33	1.0	ug/l							J
Carbon tetrachloride	- ND	0.28	1.0	ug/l							
Chlorobenzene	- ND	0.35	1.0	ug/l							
Chloroethane	- ND	0.38	1.0	ug/l							
Chloroform	- ND	0.29	1.0	ug/l							
Chloromethane	- ND	0.29	1.0	ug/l							
cis-1,3-Dichloropropene	- · ND	0.36	1.0	ug/l							
Dibromochloromethane	- ND	0.35	1.0	ug/l							
Dichlorodifluoromethane (Freon 12)	- ND	0.30	1.0	ug/l							
Ethylbenzene	- ND	0.41	1.0	ug/l							
m-Dichlorobenzene	- ND	0.39	1.0	ug/l							
Methyl tert-butyl ether (MTBE)	- ND	0.40	1.0	ug/l							
Methylene chloride	- ND	0.39	1.0	ug/l							
o-Dichlorobenzene	- ND	0.35	1.0	ug/l							
p-Dichlorobenzene	- ND	0.42	1.0	ug/l							
Tetrachloroethene	- ND	0.34	1.0	ug/l							
Toluene	- ND	0.36	1.0	ug/l							
trans-1,2-Dichloroethene	- ND	0.27	1.0	ug/l							
trans-1,3-Dichloropropene	- ND	0.33	1.0	ug/l							
Trichloroethene	- ND	0.34	1.0	ug/l							
Trichlorofluoromethane	- ND	0.43	1.0	ug/l							
B23108											Page 24 of

FINAL REPORT

Encina Wastewater Authority 6200 Avenida Encinas Carlsbad, CA 92011

2B23108

Project Number: 2022 Annual Encina Influent Priority

Pollutant Scan

Reported: 03/24/2022 11:33

Project Manager: Jeff Parks

Quality Control Results

(Continued)

Page 25 of 30

Quality Control Results										
Volatile Organic Compounds by P&T and GC/MS (Continu	ued)									
					Spike	Source	%REC		RPD	
Analyte R	Result	MDL	MRL	Units	Level	Result %REC	Limits	RPD	Limit	Quali
atch: W2B1715 - EPA 624.1 (Continued)										
Blank (W2B1715-BLK1)	ND	0.24	4.0		Prepared & A	nalyzed: 02/25/22				
Vinyl chloride	ND	0.31	1.0	ug/l						
Surrogate(s)	51.0			ug/l	50.0	102	82-125			
4-Bromofluorobenzene	49.4			ug/l	50.0	99	88-108			
Toluene-d8	48.6			ug/l	50.0	97	92-112			
LCS (W2B1715-BS1)					Dronared & A	nalyzed: 02/25/22				
	52.7	0.31	1.0	ug/l	50.0	105	52-162			
1,1,2,2-Tetrachloroethane	45.9	0.38	1.0	ug/l	50.0	92	46-157			
1,1,2-Trichloroethane	52.2	0.42	1.0	ug/l	50.0	104	52-150			
1,1-Dichloroethane	49.4	0.32	1.0	ug/l	50.0	99	59-155			
1,1-Dichloroethene	52.4	0.32	1.0	ug/l	50.0	105	0.1-234			
1,2-Dichloroethane	50.3	0.54	1.0	ug/l	50.0	101	49-155			
1,2-Dichloropropane	51.9	0.42	1.0	ug/l	50.0	104	0.1-210			
2-Butanone	52.8	2.0	5.0	ug/l	50.0	106	67-136			
2-Chloroethyl vinyl ether	53.2	0.19	1.0	ug/l	50.0	106	0.1-305			
2-Hexanone	55.0	0.46	5.0	ug/l	50.0	110	76-133			
4-Methyl-2-pentanone	51.3	0.59	5.0	ug/l	50.0	103	74-132			
Acetone	516	1.6	5.0	ug/l	500	103	60-147			
Acrolein	59.7	1.2	5.0	ug/l	50.0	119	49-152			
Acrylonitrile	49.8	0.63	2.0	ug/l	50.0	100	74-127			
Benzene	51.6	0.47	1.0	ug/l	50.0	103	37-151			
Bromodichloromethane	56.3	0.44	1.0	ug/l	50.0	113	35-155			
Bromoform	56.8	0.27	1.0	ug/l	50.0	114	45-169			
Bromomethane	51.0	0.50	1.0	ug/l	50.0	102	0.1-242			
Carbon Disulfide	56.5	0.33	1.0	ug/l	50.0	113	79-118			
Carbon tetrachloride	57.6	0.28	1.0	ug/l	50.0	115	70-140			
Chlorobenzene	49.6	0.35	1.0	ug/l	50.0	99	37-160			
Chloroethane	49.7	0.38	1.0	ug/l	50.0	99	14-230			
Chloroform	50.5	0.29	1.0	ug/l	50.0	101	51-138			
Chloromethane	49.6	0.29	1.0	ug/l	50.0	99	0.1-273			
cis-1,2-Dichloroethene	58.0	0.38	1.0	ug/l	50.0	116	85-121			
cis-1,3-Dichloropropene	55.8	0.36	1.0	ug/l	50.0	112	0.1-227			
Dibromochloromethane	60.8	0.35	1.0	ug/l	50.0	122	53-149			
Dichlorodifluoromethane (Freon 12)	51.1	0.30	1.0	ug/l	50.0	102	67-126			
Ethylbenzene	52.9	0.41	1.0	ug/l	50.0	106	37-162			
m,p-Xylene	51.9	0.29	1.0	ug/l	50.0	104	81-121			
m-Dichlorobenzene	53.2	0.39	1.0	ug/l	50.0	106	59-156			
Methyl tert-butyl ether (MTBE)	208	0.40	1.0	ug/l	200	104	80-128			
Methylene chloride	49.1	0.39	1.0	ug/l	50.0	98	0.1-221			

FINAL REPORT

Encina Wastewater Authority 6200 Avenida Encinas Carlsbad, CA 92011 Project Number: 2022 Annual Encina Influent Priority

Pollutant Scan

Reported: 03/24/2022 11:33

Project Manager: Jeff Parks

2B23108

Quality Control Results

(Continued)

Page 26 of 30

Volatile Organic Compounds by P&T and GC/MS (Continu	uea)									
					Spike 	Source	%REC		RPD	
Analyte Restricted Restriction	esult	MDL	MRL	Units	Level	Result %REC	Limits	RPD	Limit	Qualif
LCS (W2B1715-BS1) o-Dichlorobenzene	49.2	0.35	1.0	ug/l	Frepared & A 50.0	nalyzed: 02/25/22 98	18-190			
	53.0	0.29	1.0	ug/l	50.0	106	84-121			
,	48.1	0.42	1.0	ug/l	50.0	96	18-190			
Tert-butyl alcohol	198	2.1	5.0	ug/l	200	99	53-144			
•	50.6	0.34	1.0	ug/l	50.0	101	64-148			
Toluene	51.0	0.36	1.0	ug/l	50.0	102	47-150			
trans-1,2-Dichloroethene	50.4	0.27	1.0	ug/l	50.0	101	54-156			
	56.4	0.33	1.0	ug/l	50.0	113	17-183			
	51.0	0.34	1.0	ug/l	50.0	102	71-157			
	51.8	0.43	1.0	ug/l	50.0	104	17-181			
Vinyl chloride		0.31	1.0	ug/l	50.0	103	0.1-251			
Surrogate(s)										
1,2-Dichloroethane-d4	51.1			ug/l	50.0	102	82-125			
4-Bromofluorobenzene	50.5			ug/l	50.0	101	88-108			
Toluene-d8	50.6			ug/l	50.0	101	92-112			
LCS Dup (W2B1715-BSD1)					Prepared & A	nalyzed: 02/25/22				
•	52.1	0.31	1.0	ug/l	50.0	104	52-162	1	25	
1,1,2,2-Tetrachloroethane	48.4	0.38	1.0	ug/l	50.0	97	46-157	5	25	
1,1,2-Trichloroethane	53.8	0.42	1.0	ug/l	50.0	108	52-150	3	25	
1,1-Dichloroethane	49.8	0.32	1.0	ug/l	50.0	100	59-155	0.8	25	
1,1-Dichloroethene	50.3	0.32	1.0	ug/l	50.0	101	0.1-234	4	25	
1,2-Dichloroethane	50.6	0.54	1.0	ug/l	50.0	101	49-155	0.6	25	
1,2-Dichloropropane	51.9	0.42	1.0	ug/l	50.0	104	0.1-210	0.08	25	
2-Butanone	42.3	2.0	5.0	ug/l	50.0	85	67-136	22	25	
2-Chloroethyl vinyl ether	54.8	0.19	1.0	ug/l	50.0	110	0.1-305	3	25	
2-Hexanone	56.7	0.46	5.0	ug/l	50.0	113	76-133	3	25	
4-Methyl-2-pentanone	54.1	0.59	5.0	ug/l	50.0	108	74-132	5	25	
Acetone	511	1.6	5.0	ug/l	500	102	60-147	1	25	
Acrolein	63.4	1.2	5.0	ug/l	50.0	127	49-152	6	25	
Acrylonitrile	51.5	0.63	2.0	ug/l	50.0	103	74-127	3	25	
Benzene	50.9	0.47	1.0	ug/l	50.0	102	37-151	1	25	
Bromodichloromethane	56.9	0.44	1.0	ug/l	50.0	114	35-155	1	25	
Bromoform	56.9	0.27	1.0	ug/l	50.0	114	45-169	0.2	25	
Bromomethane	50.7	0.50	1.0	ug/l	50.0	101	0.1-242	0.5	25	
Carbon Disulfide	56.3	0.33	1.0	ug/l	50.0	113	79-118	0.3	25	
Carbon tetrachloride	55.9	0.28	1.0	ug/l	50.0	112	70-140	3	25	
Chlorobenzene	50.8	0.35	1.0	ug/l	50.0	102	37-160	2	25	
Chloroethane	47.2	0.38	1.0	ug/l	50.0	94	14-230	5	25	
Chloroform	51.3	0.29	1.0	ug/l	50.0	103	51-138	1	25	

FINAL REPORT

Encina Wastewater Authority 6200 Avenida Encinas Carlsbad, CA 92011 Project Number: 2022 Annual Encina Influent Priority

Pollutant Scan

Reported: 03/24/2022 11:33

Project Manager: Jeff Parks

Quality Control Results

(Continued)

Volatile Organic Compounds by P&T and GC/MS (Contir	iaca										
					Spike	Source		%REC		RPD	
•	Result	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifi
atch: W2B1715 - EPA 624.1 (Continued)											
LCS Dup (W2B1715-BSD1)					Prepared & A	nalyzed: 02/					
Chloromethane	50.5	0.29	1.0	ug/l	50.0		101	0.1-273	2	25	
cis-1,2-Dichloroethene	46.9	0.38	1.0	ug/l	50.0		94	85-121	21	25	
cis-1,3-Dichloropropene	56.3	0.36	1.0	ug/l	50.0		113	0.1-227	0.9	25	
Dibromochloromethane	60.5	0.35	1.0	ug/l	50.0		121	53-149	0.4	25	
Dichlorodifluoromethane (Freon 12)	51.5	0.30	1.0	ug/l	50.0		103	67-126	0.9	25	
Ethylbenzene	53.8	0.41	1.0	ug/l	50.0		108	37-162	2	25	
m,p-Xylene	52.0	0.29	1.0	ug/l	50.0		104	81-121	0.1	25	
m-Dichlorobenzene	54.0	0.39	1.0	ug/l	50.0		108	59-156	2	25	
Methyl tert-butyl ether (MTBE)	- 210	0.40	1.0	ug/l	200		105	80-128	1	25	
Methylene chloride	49.8	0.39	1.0	ug/l	50.0		100	0.1-221	2	25	
o-Dichlorobenzene	51.2	0.35	1.0	ug/l	50.0		102	18-190	4	25	
o-Xylene	54.1	0.29	1.0	ug/l	50.0		108	84-121	2	25	
p-Dichlorobenzene	51.0	0.42	1.0	ug/l	50.0		102	18-190	6	25	
Tert-butyl alcohol	- 198	2.1	5.0	ug/l	200		99	53-144	0.1	25	
Tetrachloroethene	51.6	0.34	1.0	ug/l	50.0		103	64-148	2	25	
Toluene	52.6	0.36	1.0	ug/l	50.0		105	47-150	3	25	
trans-1,2-Dichloroethene	49.3	0.27	1.0	ug/l	50.0		99	54-156	2	25	
trans-1,3-Dichloropropene	57.6	0.33	1.0	ug/l	50.0		115	17-183	2	25	
Trichloroethene	49.8	0.34	1.0	ug/l	50.0		100	71-157	2	25	
Trichlorofluoromethane	53.1	0.43	1.0	ug/l	50.0		106	17-181	3	25	
Vinyl chloride	51.3	0.31	1.0	ug/l	50.0		103	0.1-251	0.7	25	
iurrogate(s)											
1,2-Dichloroethane-d4				ug/l	50.0		99	82-125			
4-Bromofluorobenzene				ug/l	50.0		98	88-108			
Toluene-d8	49.7			ug/l	50.0		99	92-112			
Matrix Spike (W2B1715-MS1) Sc	ource: 2	B24111-01		Pre	pared: 02/25/2	22 Analyzed:	02/26/2	2			
1,1,1-Trichloroethane	59.3	0.31	1.0	ug/l	50.0	ND	119	52-162			
1,1,2,2-Tetrachloroethane	49.4	0.38	1.0	ug/l	50.0	ND	99	46-157			
1,1,2-Trichloroethane	58.0	0.42	1.0	ug/l	50.0	ND	116	52-150			
1,1-Dichloroethane	52.1	0.32	1.0	ug/l	50.0	ND	104	59-155			
1,1-Dichloroethene	53.0	0.32	1.0	ug/l	50.0	ND	106	0.1-234			
1,2-Dichloroethane	53.2	0.54	1.0	ug/l	50.0	ND	106	49-155			
1,2-Dichloropropane	58.0	0.42	1.0	ug/l	50.0	ND	116	0.1-210			
2-Butanone	68.0	2.0	5.0	ug/l	50.0	ND	136	36-145			
2-Chloroethyl vinyl ether	63.2	0.19	1.0	ug/l	50.0	ND	126	0.1-305			
2-Hexanone		0.46	5.0	ug/l	50.0	ND	197	46-152			MS-
4-Methyl-2-pentanone	83.3	0.59	5.0	ug/l	50.0	ND	167	54-146			MS-
Acetone	- 779	1.6	5.0	ug/l	500	2.82	155	11-169			
Acrolein	77.4	1.2	5.0	ug/l	50.0	ND	155	5-170			
											Page 27 o

FINAL REPORT

Encina Wastewater Authority 6200 Avenida Encinas Carlsbad, CA 92011 Project Number: 2022 Annual Encina Influent Priority

Pollutant Scan

Reported: 03/24/2022 11:33

Project Manager: Jeff Parks

2B23108

Quality Control Results

(Continued)

Page 28 of 30

					Spike	Source		%REC		RPD	
Analyte	Result	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualif
ch: W2B1715 - EPA 624.1 (Continued)											
latrix Spike (W2B1715-MS1)	Source: 2	B24111-01		Pre	pared: 02/25/2	22 Analyzed:	02/26/2	2			
Acrylonitrile	- 64.5	0.63	2.0	ug/l	50.0	ND	129	59-133			
Benzene	56.6	0.47	1.0	ug/l	50.0	ND	113	37-151			
Bromodichloromethane	60.0	0.44	1.0	ug/l	50.0	ND	120	35-155			
Bromoform	- 64.9	0.27	1.0	ug/l	50.0	0.901	128	45-169			
Bromomethane	36.0	0.50	1.0	ug/l	50.0	ND	72	0.1-242			
Carbon tetrachloride	62.0	0.28	1.0	ug/l	50.0	ND	124	70-140			
Chlorobenzene	55.0	0.35	1.0	ug/l	50.0	ND	110	37-160			
Chloroethane	50.9	0.38	1.0	ug/l	50.0	ND	102	14-230			
Chloroform	56.5	0.29	1.0	ug/l	50.0	ND	113	51-138			
Chloromethane	51.3	0.29	1.0	ug/l	50.0	ND	103	0.1-273			
cis-1,3-Dichloropropene	60.2	0.36	1.0	ug/l	50.0	ND	120	0.1-227			
Dibromochloromethane	65.9	0.35	1.0	ug/l	50.0	ND	132	53-149			
Dichlorodifluoromethane (Freon 12)	53.3	0.30	1.0	ug/l	50.0	ND	107	32-141			
Ethylbenzene	57.2	0.41	1.0	ug/l	50.0	ND	114	37-162			
m-Dichlorobenzene	50.1	0.39	1.0	ug/l	50.0	ND	100	59-156			
Methylene chloride	51.0	0.39	1.0	ug/l	50.0	ND	102	0.1-221			
o-Dichlorobenzene	- 55.4	0.35	1.0	ug/l	50.0	ND	111	18-190			
p-Dichlorobenzene	- 52.7	0.42	1.0	ug/l	50.0	ND	105	18-190			
Tetrachloroethene	56.3	0.34	1.0	ug/l	50.0	ND	113	64-148			
Toluene	93.1	0.36	1.0	ug/l	50.0	ND	186	47-150			MS-
trans-1,2-Dichloroethene	50.2	0.27	1.0	ug/l	50.0	ND	100	54-156			
trans-1,3-Dichloropropene	61.6	0.33	1.0	ug/l	50.0	ND	123	17-183			
Trichloroethene	56.9	0.34	1.0	ug/l	50.0	ND	114	71-157			
Trichlorofluoromethane	52.6	0.43	1.0	ug/l	50.0	ND	105	17-181			
Vinyl chloride	52.2	0.31	1.0	ug/l	50.0	ND	104	0.1-251			
urroqate(s)											
1,2-Dichloroethane-d4	- 50.7			ug/l	50.0		101	82-125			
4-Bromofluorobenzene	- 51.0			ug/l	50.0		102	88-108			
Toluene-d8	- 52.1			ug/l	50.0		104	92-112			
Matrix Spike Dup (W2B1715-MSD1)	Source: 2	B24111-01		Pre	pared: 02/25/2	22 Analyzed	02/26/2	2			
1,1,1-Trichloroethane		0.31	1.0	ug/l	50.0	ND	116	52-162	3	25	
1,1,2,2-Tetrachloroethane	50.7	0.38	1.0	ug/l	50.0	ND	101	46-157	3	25	
1,1,2-Trichloroethane	58.5	0.42	1.0	ug/l	50.0	ND	117	52-150	0.8	25	
1,1-Dichloroethane	52.9	0.32	1.0	ug/l	50.0	ND	106	59-155	2	25	
1,1-Dichloroethene	51.8	0.32	1.0	ug/l	50.0	ND	104	0.1-234	2	25	
1,2-Dichloroethane	53.8	0.54	1.0	ug/l	50.0	ND	108	49-155	1	25	
1,2-Dichloropropane	57.2	0.42	1.0	ug/l	50.0	ND	114	0.1-210	1	25	
2-Butanone		2.0	5.0	ug/l	50.0	ND	128	36-145	6	25	
2-Chloroethyl vinyl ether		0.19	1.0	ug/l	50.0	ND	128	0.1-305	1	25	

FINAL REPORT

Encina Wastewater Authority 6200 Avenida Encinas Carlsbad, CA 92011 Project Number: 2022 Annual Encina Influent Priority

Pollutant Scan

Reported: 03/24/2022 11:33

Project Manager: Jeff Parks

(Continued)

					Spike	Source		%REC		RPD	
Analyte	Result	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
atch: W2B1715 - EPA 624.1 (Continued)											
Matrix Spike Dup (W2B1715-MSD1)	Source: 2	B24111-01		Pre	pared: 02/25/2	22 Analyzed:	02/26/2	2			
2-Hexanone		0.46	5.0	ug/l	50.0	ND	188	46-152	5	25	MS-0
4-Methyl-2-pentanone		0.59	5.0	ug/l	50.0	ND	157	54-146	6	25	MS-0
Acetone	717	1.6	5.0	ug/l	500	2.82	143	11-169	8	25	
Acrolein	78.6	1.2	5.0	ug/l	50.0	ND	157	5-170	1	25	
Acrylonitrile		0.63	2.0	ug/l	50.0	ND	129	59-133	0.3	25	
Benzene	57.4	0.47	1.0	ug/l	50.0	ND	115	37-151	1	25	
Bromodichloromethane	61.6	0.44	1.0	ug/l	50.0	ND	123	35-155	3	25	
Bromoform		0.27	1.0	ug/l	50.0	0.901	128	45-169	0.3	25	
Bromomethane	39.8	0.50	1.0	ug/l	50.0	ND	80	0.1-242	10	25	
Carbon tetrachloride	61.6	0.28	1.0	ug/l	50.0	ND	123	70-140	0.6	25	
Chlorobenzene	55.1	0.35	1.0	ug/l	50.0	ND	110	37-160	0.1	25	
Chloroethane	49.6	0.38	1.0	ug/l	50.0	ND	99	14-230	3	25	
Chloroform	56.0	0.29	1.0	ug/l	50.0	ND	112	51-138	8.0	25	
Chloromethane	53.5	0.29	1.0	ug/l	50.0	ND	107	0.1-273	4	25	
cis-1,3-Dichloropropene	60.6	0.36	1.0	ug/l	50.0	ND	121	0.1-227	0.6	25	
Dibromochloromethane	66.7	0.35	1.0	ug/l	50.0	ND	133	53-149	1	25	
Dichlorodifluoromethane (Freon 12)	53.7	0.30	1.0	ug/l	50.0	ND	107	32-141	8.0	25	
Ethylbenzene	57.5	0.41	1.0	ug/l	50.0	ND	115	37-162	0.7	25	
m-Dichlorobenzene	49.9	0.39	1.0	ug/l	50.0	ND	100	59-156	0.3	25	
Methylene chloride	50.1	0.39	1.0	ug/l	50.0	ND	100	0.1-221	2	25	
o-Dichlorobenzene	53.4	0.35	1.0	ug/l	50.0	ND	107	18-190	4	25	
p-Dichlorobenzene	53.6	0.42	1.0	ug/l	50.0	ND	107	18-190	2	25	
Tetrachloroethene	55.2	0.34	1.0	ug/l	50.0	ND	110	64-148	2	25	
Toluene	65.4	0.36	1.0	ug/l	50.0	ND	131	47-150	35	25	MS-0
trans-1,2-Dichloroethene	48.9	0.27	1.0	ug/l	50.0	ND	98	54-156	3	25	
trans-1,3-Dichloropropene		0.33	1.0	ug/l	50.0	ND	122	17-183	1	25	
Trichloroethene	54.6	0.34	1.0	ug/l	50.0	ND	109	71-157	4	25	
Trichlorofluoromethane	55.7	0.43	1.0	ug/l	50.0	ND	111	17-181	6	25	
Vinyl chloride		0.31	1.0	ug/l	50.0	ND	104	0.1-251	0.3	25	
Surrogate(s) 1,2-Dichloroethane-d4				ug/l	50.0		101	82-125			
4-Bromofluorobenzene	50.6			ug/l	50.0		101	88-108			
Toluene-d8	50.2			ug/l	50.0		100	92-112			

FINAL REPORT

Encina Wastewater Authority 6200 Avenida Encinas Carlsbad, CA 92011 Project Number: 2022 Annual Encina Influent Priority

Pollutant Scan

Reported: 03/24/2022 11:33

Project Manager: Jeff Parks

V		N
Α		71

Notes and Definitions

Item	Definition
AN-IP	Sample results for structural isomers may have contribution from their isomeric pair.
1	Interference
J	Concentration detected is below the calibration range
Ja	Estimated conc. detected <mrl and="">MDL.</mrl>
M-02	Due to the nature of matrix interferences, sample was diluted prior to preparation. The MDL and MRL were raised due to the dilution.
M-04	Due to the nature of matrix interferences, sample extract was diluted prior to analysis. The MDL and MRL were raised due to the dilution.
M-05	Due to the nature of matrix interferences, sample was diluted prior to analysis. The MDL and MRL were raised due to the dilution.
MS-05 O-04	The spike recovery and/or RPD were outside acceptance limits for the MS and/or MSD due to possible matrix interference. The LCS and/or LCSD were within acceptance limits showing that the laboratory is in control and the data is acceptable. This analysis was performed outside the EPA recommended holding time.
Р	Recovery outside of target range
Q-08	High bias in the QC sample does not affect sample result since analyte was not detected or below the reporting limit.
Q-12 QC-2	The RPD result exceeded the QC control limits; however, both percent recoveries were acceptable. Sample results for the QC batch were accepted based on the percent recoveries and/or other acceptable QC data. This QC sample was reanalyzed to complement samples that require re-analysis on different date. See analysis date.
Q-ME	Acceptable QC with marginal exceedance
S-11	Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogate.
%REC	Percent Recovery
Dil	Dilution
MDL	Method Detection Limit
MRL ND	The minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence. The MRL is also known as Limit of Quantitation (LOQ) NOT DETECTED at or above the Method Reporting Limit (MRL). If Method Detection Limit (MDL) is reported, then ND means not detected at or
RPD	above the MDL. Relative Percent Difference
Source	Sample that was matrix spiked or duplicated.

Any remaining sample(s) will be disposed of one month from the final report date unless other arrangements are made in advance.

All results are expressed on wet weight basis unless otherwise specified.

All samples collected by Weck Laboratories have been sampled in accordance to laboratory SOP Number MIS002.

ANALYTICAL REPORT

Eurofins Calscience 2841 Dow Avenue, Suite 100 Tustin, CA 92780 Tel: (714)895-5494

Laboratory Job ID: 570-85664-1

Client Project/Site: 2022 Annual Encina Influent Priority

Pollutant

For:

Encina Wastewater Authority 6200 Avenida Encinas Carlsbad, California 92011

Attn: Jeff Parks

Authorized for release by: 3/17/2022 3:53:54 PM

Janice Hsu, Project Manager I (657)210-6359

Janice.Hsu@Eurofinset.com

·····LINKS ······

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

3

4

R

9

10

12

T - I -	_		0 -	1 -	1
Tab	le	OT	CO	nte	nts

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	8
QC Association Summary	10
Lab Chronicle	11
Certification Summary	12
Method Summary	13
Sample Summary	14
Chain of Custody	15
Receipt Checklists	16

Definitions/Glossary

Client: Encina Wastewater Authority

Job ID: 570-85664-1

Project/Site: 2022 Annual Encina Influent Priority Pollutant

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)
Toxicity Equivalent Quotient (Dioxin)

Too Numerous To Count

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Glossary

RER

RL RPD

TEF

TEQ TNTC

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control

Eurofins Calscience

Page 3 of 16 3/17/2022

Case Narrative

Client: Encina Wastewater Authority

Project/Site: 2022 Annual Encina Influent Priority Pollutant

Job ID: 570-85664-1

Job ID: 570-85664-1

Laboratory: Eurofins Calscience

Narrative

Job Narrative 570-85664-1

Comments

No additional comments.

Receipt

The sample was received on 2/24/2022 7:00 PM. Unless otherwise noted below, the sample arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 0.5° C.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

3

4

5

6

R

9

10

12

13

Detection Summary

Client: Encina Wastewater Authority Job ID: 570-85664-1

Project/Site: 2022 Annual Encina Influent Priority Pollutant

Client Sample ID: Encina Influent

Lab Sample ID: 570-85664-1

No Detections.

Client Sample Results

Client: Encina Wastewater Authority Job ID: 570-85664-1

Project/Site: 2022 Annual Encina Influent Priority Pollutant

Method: 245.1 - Mercury (CVAA)

Client Sample ID: Encina Influent Lab Sample ID: 570-85664-1 Date Collected: 02/23/22 08:59

Matrix: Water

Date Received: 02/24/22 19:00 Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Mercury ND 0.00025 0.00012 mg/L 03/07/22 06:03 03/09/22 15:29

Client Sample Results

Client: Encina Wastewater Authority Job ID: 570-85664-1

Project/Site: 2022 Annual Encina Influent Priority Pollutant

General Chemistry

Client Sample ID: Encina Influent Lab Sample ID: 570-85664-1 Date Collected: 02/23/22 08:59

Matrix: Water

6

Date Received: 02/24/22 19:00 Analyte Result Qualifier RL MDL Unit D Prepared Analyzed

Dil Fac

Cyanide, Total ND 0.0050 0.0025 mg/L 03/07/22 14:01 03/07/22 17:26

Eurofins Calscience

Page 7 of 16 3/17/2022 Client: Encina Wastewater Authority Job ID: 570-85664-1

Project/Site: 2022 Annual Encina Influent Priority Pollutant

Method: 245.1 - Mercury (CVAA)

Lab Sample ID: MB 570-217562/1-A

Analysis Batch: 217702

MB MB

Sample Sample

Sample Sample

ND

Method: SM 4500 CN E - Cyanide, Total (Low Level)

Result Qualifier

MR MR

ND

Result Qualifier

ND

Result Qualifier

Result Qualifier RL **MDL** Unit Analyzed Dil Fac Analyte Prepared 0.00025 03/07/22 06:03 03/07/22 11:50 Mercury ND 0.00012 mg/L

LCS LCS

LCSD LCSD

MS MS

MSD MSD

Result Qualifier

Result Qualifier

Result Qualifier

0.00996

0.00982

0.0106

0.0106

Result Qualifier

Unit

mg/L

Unit

mg/L

Unit

mg/L

Unit

mg/L

Spike

Added

0.0100

Spike

Added

0.0100

Spike

Added

0.0100

Spike

Added

0.0100

Spike

Lab Sample ID: LCS 570-217562/2-A

Matrix: Water

Mercury

Mercury

Mercury

Matrix: Water

Analysis Batch: 217702

Analyte

Lab Sample ID: LCSD 570-217562/3-A

Matrix: Water

Analysis Batch: 217702

Analyte

Lab Sample ID: 440-295498-C-1-H MS

Matrix: Water

Analysis Batch: 217702

Analyte

Lab Sample ID: 440-295498-C-1-I MSD

Matrix: Water

Analysis Batch: 217702

Analyte

Mercury

Lab Sample ID: MB 440-668507/1-A

Matrix: Water

Analyte

Analysis Batch: 668522

Cyanide, Total

Lab Sample ID: LCS 440-668507/2-A **Matrix: Water**

Analysis Batch: 668522

Analyte

Cyanide, Total

Added 0.100 0.0942

RL

0.0050

LCS LCS

Result Qualifier

MDL Unit

0.0025 mg/L

mg/L

Unit

%Rec

Prepared

80 - 120

03/07/22 14:01 03/07/22 17:26

Eurofins Calscience

Page 8 of 16

RPD

Limit

Prep Type: Total/NA Prep Batch: 217562

%Rec.

70 - 130

%Rec 106

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

D %Rec

100

%Rec

%Rec

106

98

Client Sample ID: Lab Control Sample Dup

%Rec.

Limits

85 - 115

%Rec.

Limits

85 - 115

%Rec.

Limits

Client Sample ID: Matrix Spike Duplicate

70 - 130

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Prep Batch: 217562

Prep Type: Total/NA

Prep Batch: 217562

Prep Type: Total/NA

Prep Batch: 217562

Prep Type: Total/NA

Prep Batch: 217562

RPD

RPD Limit

Limits

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 668507

Analyzed Dil Fac

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 668507 %Rec.

Limits

QC Sample Results

Client: Encina Wastewater Authority

Job ID: 570-85664-1

Project/Site: 2022 Annual Encina Influent Priority Pollutant

Method: SM 4500 CN E - Cyanide, Total (Low Level) (Continued)

Lab Sample ID: 570-85733- Matrix: Water Analysis Batch: 668522	-K-1-B MS						CI	lient Sa	Prep Type	atrix Spike e: Total/NA ch: 668507
Analysis Baton. 000022	Sample	Sample	Spike	MS	MS				%Rec.	on. 000001
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Cyanide, Total	ND		0.100	0.0965		mg/L		96	75 - 125	

Lab Sample ID: 570-85733 Matrix: Water Analysis Batch: 668522	-K-1-C MSE)				Client	Samp	le ID: N	latrix Spil Prep Ty Prep Ba	pe: Tot	al/NA
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Cyanide, Total	ND		0.100	0.101		mg/L		101	75 - 125	4	20

3/17/2022

QC Association Summary

Client: Encina Wastewater Authority

Project/Site: 2022 Annual Encina Influent Priority Pollutant

Metals

Prep Batch: 217562

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-85664-1	Encina Influent	Total/NA	Water	245.1	
MB 570-217562/1-A	Method Blank	Total/NA	Water	245.1	
LCS 570-217562/2-A	Lab Control Sample	Total/NA	Water	245.1	
LCSD 570-217562/3-A	Lab Control Sample Dup	Total/NA	Water	245.1	
440-295498-C-1-H MS	Matrix Spike	Total/NA	Water	245.1	
440-295498-C-1-I MSD	Matrix Spike Duplicate	Total/NA	Water	245.1	

Analysis Batch: 217702

Lab Sample ID MB 570-217562/1-A	Client Sample ID Method Blank	Prep Type Total/NA	Matrix Water	Method 245.1	Prep Batch 217562
LCS 570-217562/2-A	Lab Control Sample	Total/NA	Water	245.1	217562
LCSD 570-217562/3-A	Lab Control Sample Dup	Total/NA	Water	245.1	217562
440-295498-C-1-H MS	Matrix Spike	Total/NA	Water	245.1	217562
440-295498-C-1-I MSD	Matrix Spike Duplicate	Total/NA	Water	245.1	217562

Analysis Batch: 218345

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-85664-1	Encina Influent	Total/NA	Water	245.1	217562

General Chemistry

Prep Batch: 668507

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-85664-1	Encina Influent	Total/NA	Water	Distill/CN	
MB 440-668507/1-A	Method Blank	Total/NA	Water	Distill/CN	
LCS 440-668507/2-A	Lab Control Sample	Total/NA	Water	Distill/CN	
570-85733-K-1-B MS	Matrix Spike	Total/NA	Water	Distill/CN	
570-85733-K-1-C MSD	Matrix Spike Duplicate	Total/NA	Water	Distill/CN	

Analysis Batch: 668522

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-85664-1	Encina Influent	Total/NA	Water	SM 4500 CN E	668507
MB 440-668507/1-A	Method Blank	Total/NA	Water	SM 4500 CN E	668507
LCS 440-668507/2-A	Lab Control Sample	Total/NA	Water	SM 4500 CN E	668507
570-85733-K-1-B MS	Matrix Spike	Total/NA	Water	SM 4500 CN E	668507
570-85733-K-1-C MSD	Matrix Spike Duplicate	Total/NA	Water	SM 4500 CN E	668507

Job ID: 570-85664-1

3

4

6

8

40

11

4.6

1

Lab Chronicle

Client: Encina Wastewater Authority Job ID: 570-85664-1

Project/Site: 2022 Annual Encina Influent Priority Pollutant

Client Sample ID: Encina Influent

Date Received: 02/24/22 19:00

Date Collected: 02/23/22 08:59

Lab Sample ID: 570-85664-1 **Matrix: Water**

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	245.1			50 mL	100 mL	217562	03/07/22 06:03	WL8G	ECL 4
Total/NA	Analysis	245.1		1			218345	03/09/22 15:29	VWJ7	ECL 4
	Instrumer	t ID: HG7								
Total/NA	Prep	Distill/CN			50 mL	50 mL	668507	03/07/22 14:01	GG0B	IRV 2
Total/NA	Analysis	SM 4500 CN E		1			668522	03/07/22 17:26	GG0B	IRV 2
	Instrumer	t ID: Genesys30-5								

Laboratory References:

ECL 4 = Eurofins Calscience Tustin, 2841 Dow Avenue, Tustin, CA 92780, TEL (714)895-5494 IRV 2 = Eurofins Calscience Tustin, 2841 Dow Avenue, Tustin, CA 92780, TEL (714)895-5494

Accreditation/Certification Summary

Client: Encina Wastewater Authority

Project/Site: 2022 Annual Encina Influent Priority Pollutant

Job ID: 570-85664-1

Laboratory: Eurofins Calscience

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
California	Los Angeles County Sanitation Districts	10109	09-30-22
California	SCAQMD LAP	17LA0919	11-30-21 *
California	State	2944	09-30-22
Guam	State	21-003R	06-22-22
Nevada	State	CA00111	07-31-22
Oregon	NELAP	CA300001	01-31-23
USDA	US Federal Programs	P330-20-00034	02-10-23
Washington	State	C916-18	10-12-22

Laboratory: Eurofins Calscience

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
California	State	2706	06-30-22

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

Eurofins Calscience

Method Summary

Client: Encina Wastewater Authority

Project/Site: 2022 Annual Encina Influent Priority Pollutant

Method	Method Description	Protocol	Laboratory
245.1	Mercury (CVAA)	EPA	ECL 4
SM 4500 CN E	Cyanide, Total (Low Level)	SM	IRV 2
245.1	Preparation, Mercury	EPA	ECL 4
Distill/CN	Distillation, Cyanide	None	IRV 2

Protocol References:

EPA = US Environmental Protection Agency

None = None

SM = "Standard Methods For The Examination Of Water And Wastewater"

Laboratory References:

ECL 4 = Eurofins Calscience Tustin, 2841 Dow Avenue, Tustin, CA 92780, TEL (714)895-5494

IRV 2 = Eurofins Calscience Tustin, 2841 Dow Avenue, Tustin, CA 92780, TEL (714)895-5494

Job ID: 570-85664-1

9

Δ

5

6

10

11

13

Sample Summary

Client: Encina Wastewater Authority

Project/Site: 2022 Annual Encina Influent Priority Pollutant

 Lab Sample ID
 Client Sample ID
 Matrix
 Collected
 Received

 570-85664-1
 Encina Influent
 Water
 02/23/22 08:59
 02/24/22 19:00

.

Job ID: 570-85664-1

3

__

6

8

9

10

10

13

💸 eurofins

Sarrier Tracking No(s)

Chain of Custody Record

N - None
O - AsNaO2
P - Na2O45
Q - Na2SO3
R - Na2SC03
R - Na2SC03
S - H2SO4
U - Acetone
U - Acetone
W - PH 4-5
Z - other (specify) 60-81 Special Instructions/Note: Ver: 08/04/2016 Months Company Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Mon ۵ Ω Preservation Codes H - Ascorbic Acid 1330 C - Zn Acetate D - Nitric Acid E - NaHSO4 F - MeOH Page: Page 1 of 1 570-85664 Chain of Custody I - Ice J - DI Water K - EDTA I L - EDA G - Amchlor 20 Total Number of containers 0.5/015 Date/Time: Method of Shipment **Analysis Requested** Cooler Temperature(s) °C and Other Remarks: Special Instructions/QC Requirements: Jilliam Janice. Hsu@Eurofinset.com × Total Cyanide SM 4500 CN-E Received by: Received by: Mercury 245.1 Lab PM: Janice Hsu Time: -leid Filtered Sample (Yes or No) E-Mail: $\mathbb{E}^{\mathsf{Company}}_{\mathcal{A}}$ Company FCT (W=water, S=solid, O=waste/oi BT=Tissue ⋚ ⋚ Company Radiological Nguyen Type (C=comp, Sample G=grab) 1900 14 Working Days ပ 2017 - SO63 1300 Sample 3/23-23/22 0854-Date: Unknown 2/24/22 Sampler. Steven 122 FAT Requested (days): Due Date Requested: 2/82-23/13 Sample Date 760.268.8801 Date/Tirpe: Project #: Poison B roject Name: 2022 Annual Encina Influent Priority Pollutant Scan Skin Irritant Deliverable Requested: I, II, III, IV, Other (specify) **Encina Influent Encina Influent** Custody Seal No. | | Flammable Possible Hazard Identification **Encina Wastewater Authority** Empty Kit Relinquished by: Custody Seals Intact: △ Yes △ No <u>parks@encinajpa.com</u> Client Information 6200 Avenida Encinas Sample Identification State, Zip: California, 92011 Non-Hazard 260-268-8801 elinquished by: Client Contact: Jeff Parks elinquished by: linquished by: Carlsbad company:

Irvine, CA 92614-5817 Phone (949) 261-1022 Fax (949) 260-3297

Login Sample Receipt Checklist

Client: Encina Wastewater Authority

Job Number: 570-85664-1

Login Number: 85664 List Source: Eurofins Calscience

List Number: 1

Creator: Lagunas, Jorge L

Creator. Lagurias, Jorge L		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	N/A	Not present
Sample custody seals, if present, are intact.	N/A	Not Present
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

4

5

7

9

11

eSMR PDF Report

Summary: Semi-Annual SMR (MONNPDES) report for H2 2022

Summary: Semi-Annual SMR (MONNPDES) report for H2 2022 submitted by Octavio Navarrete (Chief Plant Operator) on 01/30/2023.

Order Number: R9-2018-0059

Case Worker: Joann L Lim

Facility Name: Carlsbad WRF **/** Encina Ocean Outfall

/ Encina Water Pollution Control

Facility **/** Vallecitos WD Meadowlark

WRP

Waterboard Office: Region 9 - San Diego **/** Region 9

- San Diego **/** Region 9 - San

Diego **/** Region 9 - San Diego

Report Effective Dates: 07/01/2022 - 12/31/2022

No Discharge Periods

Name	Description	Dates	Comments
Encina Ocean Outfall 001	POTW Effluent and waste brine		No Discharge Flows from M-002 or M-005.

Title

Self-Determined Violations

No Violations Entered

Attachments

No Attachments Available

Cover Letter

SDRWQCB,

Attached is the July-December 2022 Semi Annual NPDES Monitoring Report.

Sincerely,

EWA Staff

Data Summary

Analytical Results

Location	Collection Method, Depth (m)	Sample Type, Matrix	Parameter, Analytical Method	Sample Date, Sample Time, Analysis Date	Field Rep, Lab Rep, Lab Batch	Result, Units	MDL, ML, RL	Review Priority, QA Codes	Comments	Data Source
M-004	1 1	- water	1,1,1-Trichloroethane E624	08/09/2022 06:58:00 08/12/2022	1 -	ND lb/day	.033 - .0875	No -		CDF_Analytical_Cal culated_01262023. zip
M-004	1 1	- water	1,1,1-Trichloroethane E624	08/09/2022 06:58:00 08/12/2022	1 -	ND ug/L	.19 - .5	No -		CDF_Analytical_Cal culated_01262023. zip
M-004	-	- water	1,1,2,2-Tetrachloroethane E624	08/09/2022 06:58:00 08/12/2022	1	ND ug/L	.15 - .5	No -		CDF_Analytical_Cal culated_01262023. zip

Location	Collection Method, Depth (m)	Sample Type, Matrix	Parameter, Analytical Method	Sample Date, Sample Time, Analysis Date	Field Rep, Lab Rep, Lab Batch	Result, Units	MDL, ML, RL	Review Priority, QA Codes	Comments	Data Source
	-1- ,			08/09/2022	-	ND	.02625			CDF Analytical Cal
M-004		- water	1,1,2,2-Tetrachloroethane E624	06:58:00	1	שא lb/day	-	No		culated_01262023.
	-	Water	6024	08/12/2022	-	ib/day	.0875	-		zip
			1,1,2-Trichloroethane	08/09/2022	-	ND	.16	No		CDF_Analytical_Cal
M-004	_	- water	E624	06:58:00	1	ug/L	-	INO		culated_01262023.
	-	Water	L024	08/12/2022	-	ug/L	.5	_		zip
	_	_	1,1,2-Trichloroethane	08/09/2022	-	ND	.028	No		CDF_Analytical_Cal
M-004	_	water	E624	06:58:00	1	lb/day	-	-		culated_01262023.
	_	Water	L024	08/12/2022	-	1b/day	.0875			zip
	_	_	1,1-Dichloroethylene	08/09/2022	-	ND	.03676	No		CDF_Analytical_Cal
M-004	_	water	E624	06:58:00	1	lb/day	-			culated_01262023.
	_	Water	L024	08/12/2022	-	1b/day	.0875283			zip
			1,1-Dichloroethylene	08/09/2022	-	ND	.21	No		CDF_Analytical_Cal
M-004	_	water	E624	06:58:00	1	ug/L	-	INO		culated_01262023.
	_	Water	L024	08/12/2022	-	ug/L	.5	_		zip
			1,2-Dichlorobenzene	08/09/2022	-	ND	.27	No		CDF_Analytical_Cal
M-004	_	- water	E624	06:58:00	1	ug/L	-	INO		culated_01262023.
	_	Water	6024	08/12/2022	-	l ug/L	.5	-		zip
			1.2 Dishlarahanzana	08/09/2022	-	ND	.0472	No		CDF Analytical Cal
M-004	-	-	1,2-Dichlorobenzene E624	06:58:00	1		-	No		culated_01262023.
	-	water	E024	08/12/2022	-	lb/day	.0875	-		zip
			1.2 Diable as allows	08/09/2022	-	ND	.0122	NI -		CDF Analytical Cal
M-004	-	-	1,2-Dichloroethane	06:58:00	1	ND	-	No		culated_01262023.
	-	water	E624	08/12/2022	-	lb/day	.0875	-		zip
			100111	08/09/2022	-		.07			CDF Analytical Cal
M-004	-	<u> </u>	1,2-Dichloroethane	06:58:00	1	ND	-	No		culated_01262023.
	-	water	E624	08/12/2022	-	ug/L	.5	-		zip
				08/09/2022	-	†	.0875			CDF Analytical Cal
M-004	-	<u> </u>	1,2-Diphenylhydrazine	06:58:00	1	ND	-	No		culated_01262023.
	-	water	E625	08/18/2022	-	lb/day	.1751	-		zip
				08/09/2022	-	†	.5			CDF Analytical Cal
M-004	-	<u> </u>	1,2-Diphenylhydrazine	06:58:00	1	ND	-	No		culated_01262023.
	-	water	E625	08/12/2022	-	ug/L	1	-		zip
				08/09/2022	_		.0315			CDF Analytical Cal
M-004	-		1,3-Dichlorobenzene	06:58:00	1	ND	-	No		culated_01262023.
	-	water	E624	08/12/2022	-	lb/day	.0875	-		zip
				08/09/2022	_		.18			CDF Analytical Cal
M-004	-	-	1,3-Dichlorobenzene	06:58:00	1	ND		No		culated_01262023.
	-	water	E624	08/12/2022	-	ug/L	.5	-		zip
				08/09/2022	_	<u> </u>	.18			CDF Analytical Cal
M-004	-	-	1,4-Dichlorobenzene	06:58:00	1	ND		No		culated_01262023.
	-	water	E624	08/12/2022	-	ug/L	.5	-		zip
				08/09/2022	_	<u> </u>	.0315			CDF Analytical Cal
M-004	-	-	1,4-Dichlorobenzene	06:58:00	1	ND	1.0313	No		culated_01262023.
1.00.	-	water	E624	08/12/2022	-	lb/day	.0875	-		zip
				08/09/2022	_	+	.07			CDF Analytical Cal
M-004	-	-	2,4,6-Trichlorophenol	06:58:00	1	ND	.07	No		culated_01262023.
	-	water	E625	08/18/2022	-	lb/day	.8753	-		zip
				08/09/2022	-	†	.4			CDF Analytical Cal
M-004	-	-	2,4,6-Trichlorophenol	06:58:00	1	ND	'-	No		culated_01262023.
	-	water	E625	08/18/2022	-	ug/L	5	-		zip
			 	08/09/2022	_	†	.003			CDF Analytical Cal
M-004	-	-	2,4-DDD	06:58:00	1	ND	005	No		culated_01262023.
11 004	-	water	E625	08/18/2022	-	ug/L	.005	-		zip
			 	08/18/2022	_	 	.0005			CDF_Analytical_Cal
M-004	-	-	2,4-DDD	06:58:00	1	ND	0003	No		culated_01262023.
11 304	-	water	E625	08/18/2022	-	lb/day	.0009	-		zip
	I	I	1	00/10/2022		1		i .		1 P

Location	Collection Method, Depth (m)	Sample Type, Matrix	Parameter, Analytical Method	Sample Date, Sample Time, Analysis Date	Field Rep, Lab Rep, Lab Batch	Result, Units	MDL, ML, RL	Review Priority, QA Codes	Comments	Data Source
				08/09/2022	-	T T	.002			CDF Analytical Cal
M-004	-	- water	2,4-DDE E625	06:58:00	1	ND	-	No		culated_01262023.
	-	water	E023	08/18/2022	-	ug/L	.005	-		zip
			2,4-DDE	08/09/2022	-	ND	.0004	No		CDF_Analytical_Cal
M-004	-	- water	E625	06:58:00	1	Ib/day	-	INO		culated_01262023.
	_	water	L025	08/18/2022	-	1b/day	.0009			zip
	_	_	2,4-DDT	08/09/2022	-	ND	.001	No		CDF_Analytical_Cal
M-004	_	water	E625	06:58:00	1	ug/L	-	-		culated_01262023.
		water	2023	08/18/2022	-	49/2	.005			zip
	_	_	2,4-DDT	08/09/2022	-	ND	.0002	No		CDF_Analytical_Cal
M-004	_	water	E625	06:58:00	1	lb/day	-	-		culated_01262023.
		Water	2023	08/18/2022	-	15/44	.0009			zip
	_	_	2,4-Dinitrophenol	08/09/2022	-	ND	.3501	No		CDF_Analytical_Cal
M-004	_	water	E625	06:58:00	1	lb/day		-		culated_01262023.
		wate.	2023	08/18/2022	-	15,44,	.8752			zip
	_	_	2,4-Dinitrophenol	08/09/2022	-	ND	2	No		CDF_Analytical_Cal
M-004	_	water	E625	06:58:00	1	ug/L	-	-		culated_01262023.
		wate.	2023	08/18/2022	-	49,2	5			zip
	_	_	2,4-Dinitrotoluene	08/09/2022	-	ND	.9	No		CDF_Analytical_Cal
M-004	_	water	E625	06:58:00	1	ug/L	-	-		culated_01262023.
		Water	2023	08/12/2022	-	49/2	5			zip
	_	_	2,4-Dinitrotoluene	08/09/2022	-	ND	.1576	No		CDF_Analytical_Cal
M-004	_	water	E625	06:58:00	1	lb/day	-	-		culated_01262023.
		Water	2023	08/18/2022	-	10/ddy	.8753			zip
	_	_	3,3-Dichlorobenzidine	08/09/2022	-	ND	.8752	No		CDF_Analytical_Cal
M-004	_	water	E625	06:58:00	1	lb/day	-	INO		culated_01262023.
	_	water	L025	08/18/2022	-	1b/day	.8752	_		zip
	_	_	3,3-Dichlorobenzidine	08/09/2022	-	ND	5	No		CDF_Analytical_Cal
M-004	_	water	E625	06:58:00	1	ug/L	-	-		culated_01262023.
		Water	2023	08/18/2022	-	ug/L	5			zip
	_	_	4,4-DDD	08/09/2022	-	ND	.0002	No		CDF_Analytical_Cal
M-004	_	water	E625	06:58:00	1	lb/day	-	-		culated_01262023.
		Water	2023	08/18/2022	-	16/day	.0018			zip
	_	_	4,4-DDD	08/09/2022	-	ND	.001	No		CDF_Analytical_Cal
M-004	_	water	E625	06:58:00	1	ug/L	-	-		culated_01262023.
		wate.	2023	08/18/2022	-	49/2	.01			zip
	_	_	4,4-DDE	08/09/2022	-	ND	.0002	No		CDF_Analytical_Cal
M-004	_	water	E625	06:58:00	1	lb/day		-		culated_01262023.
		wate.	2023	08/18/2022	-	15,44,	.0018			zip
	_	_	4,4-DDE	08/09/2022	-	ND	.001	No		CDF_Analytical_Cal
M-004	_	water	E625	06:58:00	1	ug/L	-	-		culated_01262023.
		wate.	2023	08/18/2022	-	49,2	.01			zip
	_	_	4,4-DDT	08/09/2022	-	ND	.0007	No		CDF_Analytical_Cal
M-004	_	water	E625	06:58:00	1	lb/day		-		culated_01262023.
		wate.	2023	08/18/2022	-	15,44,	.0018			zip
	_	_	4,4-DDT	08/09/2022	-	ND	.004	No		CDF_Analytical_Cal
M-004	_	water	E625	06:58:00	1	ug/L	-	-		culated_01262023.
				08/18/2022	-		.01			zip
	<u>-</u>	_	4,6-Dinitro-2-methylphenol	08/09/2022	-	ND	.3501	No		CDF_Analytical_Cal
M-004	_	water	E625	06:58:00	1	lb/day		-		culated_01262023.
				08/18/2022	-	1.2, 44,	.8752			zip
	_	_	4,6-Dinitro-2-methylphenol	08/09/2022	-	ND	2	No		CDF_Analytical_Cal
M-004	_	water	E625	06:58:00	1	ug/L		-		culated_01262023.
				08/18/2022	-		5			zip
	<u> </u>	_	Acenaphthylene	08/09/2022	-	ND	.0035	No		CDF_Analytical_Cal
M-004	-	water	E625	06:58:00	1	lb/day	-	'-		culated_01262023.
				08/18/2022	-	1,,	.035			zip

Mode	Location	Collection Method, Depth (m)	Sample Type, Matrix	Parameter, Analytical Method	Sample Date, Sample Time, Analysis Date	Field Rep, Lab Rep, Lab Batch	Result, Units	MDL, ML, RL	Review Priority, QA Codes	Comments	Data Source
M-004 Water Form Refrequency Refre	Location	Deptii (iii)	PIGCIA			-	i e			Comments	
March Marc	M-004	-				1			No		
March		-	water	E625		-	ug/L	.2	-		
M-004 Water Ed.24						_					
M-004 Matter Ma	M-004	-				1		-	No		
M-004		-	water	E024		-	l ug/L	2	-		
M-004 Water F602 Martinory, Total Recoverable 12/30/2022 M-004 Martinory, Total Recoverable 12/30/2022 M-004 Martinory, Total Recoverable 12/30/2022 M-004 M				Aproloip		-	ND	.1417	NI-		CDF Analytical Cal
M-004 - Actylonitrile 08/09/2022 - ND 175 ND CDF, Analytical Call	M-004	-	- water			1		-	NO		culated_01262023.
M-004		-	water	E024		-	ID/day	.3501	-		zip
M-004 Water E024 Martine M				Acritorita		-	ND	.75	No		CDF Analytical Cal
M-004 - Actylonitrile 08/09/2022 - ND 1312 No CDF_Analytical_Cal_ culated_0126023.	M-004	-	- water			1		-	INO		
M-004 - Acrylonitrile 08/09/2022 - ND 1312 NO CDF_Analytical Call culated 016/2023 2ip 10/2023 2ip		-	Water	6024		-	l ug/L	2	-		zip
M-004 Water E624 06:58:00 1				Acrylonitrilo		-	ND	.1312	No		
M-004	M-004		- water			1		-	INO		culated_01262023.
M-004 Water E625 O818/1/2022 Ug/L O55 O5 O55		-	Water	6024		-	I ID/Gay	.3501	-		zip
M-004 water E625 065:58:00 1				Aldrin	08/09/2022	-	ND	.003	No		CDF Analytical Cal
M-004 	M-004	-	- water			1		-	INO		culated_01262023.
M-004 - Adrin O8/09/2022 - ND 0.005 No CDF_Analytical Call Call Call Call Call Call Call		-	water	E025		-	l ug/L	.005	-		zip
M-004 - water E625 6818/2022 -				Alabaia		-	NID	.0005	Nia		CDF Analytical Cal
M-004 - Anthracene	M-004	-	-			1		-	NO		culated 01262023.
M-004 -		-	water	E025		-	I ID/day	.00087	-		
M-004 - Water E625 06.58:00 1 Vg/L 3 - 2 2 2 2 2 2 2 2 2				Authoraca		-	NID	.03	NI -		CDF Analytical Cal
M-004 - Anthracene	M-004	-	-			1		-	NO		
M-004		-	water	E025		-	l ug/L	.3	-		
M-004 - water E625 06:58:00 1 lb/day No culated 01262023 2ip				Authoraca		-	NID	.0052	NI -		CDF Analytical Cal
M-004	M-004					1		-	NO		
M-004		-	water	E025		-	I ID/day	.052	-		
M-004 - Water E200.7 O70.000 1 O70.000				Antinony. Total Decements		-	ND	8	NI-		CDF Analytical Cal
M-004	M-004	-	-			1		-	NO		
M-004 -		-	water	E200.7		-	l ug/L	16	-		zip
M-004 - water E200.7 07:00:00 1 ND 10/day 3.045 - 2ip 10/day 1.04 1.04				Antinony. Total Decements		-	ND	1.5225	NI-		CDF Analytical Cal
M-004 -	M-004	-	- water			1		-	NO		
M-004 - - Benzene E624 06:58:00 1 ND Ib/day - NO CDF_Analytical_Cal culated_01262023. zip No CDF_Analytical_Cal culated_01262023. zip No CDF_Analytical_Cal culated_01262023. zip No CDF_Analytical_Cal culated_01262023. zip ND ND ND ND ND ND ND N		-	water	E200.7		-	ID/day	3.045	-		zip
M-004 - Water E624 06:58:00 1				Ponzono		-	ND	.0315	No		CDF_Analytical_Cal
M-004 Company M-004 M-005 M-	M-004	-	- water			1		-	INO		culated_01262023.
M-004 - - - Benzene 68/09/2022 - ND 1.18 No CDF_Analytical_Cal Cal		-	Water	6024		-	I ID/Gay	.875	-		zip
M-004 - Water E624 06:58:00 1 Wg/L .5 - Culated_01262023. zip				Danzana		-	ND	.18	No		CDF Analytical Cal
M-004 - Benzidine Benzidine Benzidine Benzidine E625 Benzidine	M-004	-	- water	Benzene		1		-	INO		
M-004 - Water E625 06:58:00 1 Wg/L 5 - CDF_Analytical_Cal_Cal_Cal_Cal_Cal_Cal_Cal_Cal_Cal_C		-	Water	6024		-	l ug/L	.5	-		zip
M-004 - Water E625 06:58:00 1 Wg/L 5 - CDF Analytical Cal culated 01262023. zip				Donaidino	08/09/2022	-	ND	4	No		CDF Analytical Cal
M-004 M-	M-004	-	- water			1		-	INO		culated_01262023.
M-004 - - Benzidine E625 08/09/2022 06:58:00 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		-	Water	E023		-	l ug/L	5	-		zip
M-004				Ponzidino		-	ND	.7002	No		CDF_Analytical_Cal
M-004 M-	M-004	-	- water			1		-	INO		culated_01262023.
M-004 - - Benzo(a)anthracene E625 08/09/2022 - 06:58:00 08/18/2022 - 08/18/2022 - 08/18/2022 - 08/18/2022 - 08/18/2022 - 08/18/2022 - 06:58:00 08/18/2022 - 06:58:00 08/18/2022 - 06:58:00 08/18/2022 - 06:58:00 08/18/2022 - 06:58:00 08/18/2022 - 06:58:00 08/18/2022 - 06:58:00 08/18/2022 - 06:58:00 01 08/09/2022 - 06:58:00 01 08/09/2022 - 06:58:00 01 08/09/2022 - 06:58:00 01 08/09/2022 - 06:58:00 01 08/09/2022 - 06:58:00 01 09/18		-	water	E025		-	I ID/day	.8573	-		zip
M-004				Danza (a) anthra cono		-	ND	.05	No		CDF Analytical Cal
M-004 M-005 M-005 M-006 M-007 M-007 M-007 M-007 M-008 M-	M-004	-	water			1		-	I NO		culated_01262023.
M-004 - vater Benzo(a)anthracene E625 08/09/2022 06:58:00 08/18/2022 - 08/09/2022 06:58:00 08/18/2022 - 08/09/2022 06:58:00 08/18/2022 - 08/09/2022 06:58:00 08/18/2022 - 08/09/2022 06:58:00 08/18/2022 - 08/09/2022 06:58:00 08/18/2022 - 08/09/2022 06:58:00 08/18/2022 - 08/09/2022 06:58:00 08/		-	Water	E023		-	l ug/L	.3	-		zip
M-004 - water E625				Ronzo(a)anthracono		-	NID	.0087	No		CDF_Analytical_Cal
M-004 M-00525 M-006:58:00 M-006:58:00 M-006:58:00 M-006:58:00 M-006:58:00 M-006:58:00 M-006:58:00 M-006:58:00 M-006:58:00 M-007 M-00	M-004	-	water			1		-	I NO		culated_01262023.
M-004 Benzo(a)pyrene E625			watei			-	ib/day				zip
M-004 - water E625				Ronzo(a)pyrono		-	NID	.04	No		CDF_Analytical_Cal
M-004 - Benzo(a)pyrene Benzo(a)c	M-004	-	water			1		-	I NO		culated_01262023.
M-004 - Benzo(a)pyrene		<u> </u>	water			<u> </u>	L ug/L				zip
M-004 - Benzo(a)pyrene 06:58:00 1 ND - NO culated_01262023.				Ponzo(a)nyrona		-	ND	.007	No		CDF_Analytical_Cal
	M-004	-	- water			1		-	INO		culated_01262023.
			water	LU2J	08/18/2022		I ib/uay	.0525			

Location	Collection Method, Depth (m)	Sample Type, Matrix	Parameter, Analytical Method	Sample Date, Sample Time, Analysis Date	Field Rep, Lab Rep, Lab Batch	Result, Units	MDL, ML, RL	Review Priority, QA Codes	Comments	Data Source
Location	Depth (III)	Macrix		08/09/2022	- Lab Batch		.05		Comments	CDF Analytical Cal
M-004	-	-	Benzo(b)fluoranthene	06:58:00	1	ND	-	No		culated_01262023.
	-	water	E625	08/18/2022	-	ug/L	.3	-		zip
				08/09/2022	-		.00875			CDF Analytical Cal
M-004	-	-	Benzo(b)fluoranthene	06:58:00	1	ND	-	No		culated_01262023.
	-	water	E625	08/18/2022	-	lb/day	.0525	-		zip
			5 (13)	08/09/2022	-		.05			CDF Analytical Cal
M-004	-	-	Benzo(ghi)perylene	06:58:00	1	ND	-	No		culated 01262023.
	-	water	E625	08/18/2022	-	ug/L	.1	-		zip –
			December (als No and Long	08/09/2022	-	ND	.0087	NI -		CDF Analytical Cal
M-004	-	-	Benzo(ghi)perylene E625	06:58:00	1	ND	-	No		culated_01262023.
	-	water	E025	08/18/2022	-	lb/day	.0175	-		zip –
			Daniel (I) flore and the area	08/09/2022	-	ND	.0035	NI -		CDF Analytical Cal
M-004	-	-	Benzo(k)fluoranthene	06:58:00	1	ND	-	No		culated_01262023.
	-	water	E625	08/18/2022	-	lb/day	.0525	-		zip –
			D (1)(1 1)	08/09/2022	-		.02			CDF Analytical Cal
M-004	-	-	Benzo(k)fluoranthene	06:58:00	1	ND "	-	No		culated_01262023.
	-	water	E625	08/18/2022	-	ug/L	.3	-		zip –
				08/09/2022	-		.021			CDF Analytical Cal
M-004	-	-	Beryllium, Total Recoverable	06:58:00	1	ND	-	No		culated_01262023.
	-	water	E200.8	08/12/2022	-	lb/day	.035	-		zip
				08/09/2022	-		.12			CDF Analytical Cal
M-004	-	-	Beryllium, Total Recoverable	06:58:00	1	ND	-	No		culated_01262023.
	-	water	E200.8	08/12/2022	-	ug/L	.2	-		zip
				08/09/2022	_		.013			CDF Analytical Cal
M-004	-	-	BHC, Sum	06:58:00	1	ND	.013	No		culated_01262023.
	-	water	E625	08/18/2022	-	ug/L	.03	-		zip
				08/09/2022	-		.0022			CDF Analytical Cal
M-004	-	-	BHC, Sum	06:58:00	1	ND	.0022	No		culated_01262023.
	-	water	E625	08/18/2022	-	lb/day	.0052	-		zip
				08/09/2022		1	.0875			CDF Analytical Cal
M-004	-	-	Bis (2-Chloroethoxy) Methane	06:58:00	1	ND	.0075	No		culated_01262023.
" 00+	-	water	E625	08/18/2022	-	lb/day	.875	-		zip
				08/09/2022		†	.5			CDF Analytical Cal
M-004	-	-	Bis (2-Chloroethoxy) Methane	06:58:00	1	ND	.5	No		culated_01262023.
" 00+	-	water	E625	08/18/2022	-	ug/L	5	-		zip
				08/09/2022		†	.1576			CDF_Analytical_Cal
M-004	-	-	Bis (2-Chloroethyl) Ether	06:58:00	1	ND	.1370	No		culated_01262023.
141-00-	-	water	E625	08/18/2022	-	lb/day	.1751	-		zip
				08/09/2022			.9			CDF Analytical Cal
M-004	-	-	Bis (2-Chloroethyl) Ether		- 1	ND	.9	No		culated_01262023.
141-004	-	water	E625	06:58:00	-	ug/L	1	-		zip
				08/18/2022			.9			CDF_Analytical_Cal
M-004	-	-	Bis (2-Chloroisopropyl) Ether	08/09/2022	1	ND	.9	No		culated_01262023.
141-004	-	water	E625	06:58:00	_	ug/L	2	-		zip
				08/18/2022	-		.15755			CDF Analytical Cal
M-004	-	-	Bis (2-Chloroisopropyl) Ether	08/09/2022	- 1	ND	.13/33	No		culated_01262023.
141-004	-	water	E625	06:58:00	_ _	lb/day	.3501	-		zip
 				08/18/2022	-		.0875			CDF Analytical Cal
M-004	-	-	Bis (2-Ethylhexyl) Phthalate	08/09/2022	- 1	DNQ 0.473	.00/5	No		culated 01262023.
141-004	-	water	E625	06:58:00	_ _	lb/day	.5252	-		zip
 			+	08/18/2022	<u>-</u>	+		1		CDF Analytical Cal
M-004	-	-	Bis (2-Ethylhexyl) Phthalate	08/09/2022	- 1	DNQ 2.7	.5	No		culated_01262023.
141-004	-	water	E625	06:58:00	<u>-</u>	ug/L	3	-		zip
<u> </u>			+	08/18/2022		+				CDF_Analytical_Cal
M-004	-	-	Bromoform	08/09/2022	- 1	ND	.15	No		culated_01262023.
141-004	-	water	E624	06:58:00	1	ug/L	.5	-		zip
		I	1	08/12/2022	-	1	ر. ا	I		²¹

Location	Collection Method, Depth (m)	Sample Type, Matrix	Parameter, Analytical Method	Sample Date, Sample Time, Analysis Date	Field Rep, Lab Rep, Lab Batch	Result, Units	MDL, ML, RL	Review Priority, QA Codes	Comments	Data Source
Location	Depth (III)	Macrix		08/09/2022	-		.0263		Comments	CDF Analytical Cal
M-004	-	-	Bromoform	06:58:00	1	ND	.0203	No		culated_01262023.
1.00.	-	water	E624	08/12/2022	-	lb/day	.0875	-		zip
				08/09/2022	-		.0525			CDF Analytical Cal
M-004	-		Bromomethane	06:58:00	1	ND	-	No		culated_01262023.
	-	water	E624	08/12/2022	-	lb/day	.0875	-		zip
				08/09/2022	-		.3			CDF Analytical Cal
M-004	-	-	Bromomethane	06:58:00	1	ND	-	No		culated 01262023.
	-	water	E624	08/12/2022	-	ug/L	.5	-		zip –
			Camban Tatus ablanida	08/09/2022	-	ND	.16	NI-		CDF Analytical Cal
M-004	-	- water	Carbon Tetrachloride E624	06:58:00	1	ND	-	No		culated_01262023.
	-	water	E024	08/12/2022	-	ug/L	.5	-		zip –
			Camban Tatus ablanida	08/09/2022	-	ND	.028	NI-		CDF Analytical Cal
M-004	-	-	Carbon Tetrachloride E624	06:58:00	1	ND Ib/day	-	No		culated_01262023.
	-	water	E024	08/12/2022	-	lb/day	.0875	-		zip
			Chlandana	08/09/2022	-	ND	.003	NI-		CDF Analytical Cal
M-004	-	-	Chlordane	06:58:00	1	ND	-	No		culated_01262023.
	-	water	E625	08/18/2022	-	ug/L	.01	-		zip –
				08/09/2022	-		.0018			CDF Analytical Cal
M-004	-	-	Chlordane	06:58:00	1	ND	-	No		culated_01262023.
	-	water	E625	08/18/2022	-	lb/day	.0053	-		zip –
				08/09/2022	-		.0315			CDF Analytical Cal
M-004	-	<u> </u>	Chlorobenzene	06:58:00	1	ND	-	No		culated_01262023.
	-	water	E624	08/12/2022	-	lb/day	.0875	-		zip
				08/09/2022	-		.18			CDF Analytical Cal
M-004	-		Chlorobenzene	06:58:00	1	ND "	-	No		culated_01262023.
	-	water	E624	08/12/2022	-	ug/L	.5	-		zip
			CLL C	08/09/2022	-	D.110 0 001	.0105			CDF Analytical Cal
M-004	-	<u> </u>	Chloroform	06:58:00	1	DNQ 0.061	-	No		culated_01262023.
	-	water	E624	08/12/2022	-	lb/day	.0875	-		zip –
			CLL (08/09/2022	-	540 6 35	.06			CDF Analytical Cal
M-004	-	-	Chloroform	06:58:00	1	DNQ 0.35	-	No		culated_01262023.
	-	water	E624	08/12/2022	-	ug/L	.5	-		zip –
				08/09/2022	-		.0228			CDF Analytical Cal
M-004	-	-	Chloromethane	06:58:00	1	ND	-	No		culated_01262023.
	-	water	E624	08/12/2022	-	lb/day	.0875	-		zip –
			Chilana and the area	08/09/2022	-	ND	.13	NI.		CDF_Analytical_Cal
M-004	-	-	Chloromethane	06:58:00	1	ND	-	No		culated_01262023.
	-	water	E624	08/12/2022	-	ug/L	.5	-		zip –
			Clamata	08/09/2022	-	ND	.0087	NI-		CDF_Analytical_Cal
M-004	-	-	Chrysene E625	06:58:00	1	ND Ib/day	-	No		culated_01262023.
	-	water	E025	08/18/2022	-	lb/day	.0525	-		zip –
			Clamata	08/09/2022	-	ND	.05	NI-		CDF_Analytical_Cal
M-004	-	-	Chrysene E625	06:58:00	1	ND	-	No		culated_01262023.
	-	water	E025	08/18/2022	-	ug/L	.3	-		zip –
			de 1.2 Dieblessesses	08/09/2022	-	ND	.09	NI -		CDF Analytical Cal
M-004	-	-	cis-1,3-Dichloropropene	06:58:00	1	ND	-	No		culated_01262023.
	-	water	E624	08/12/2022	-	ug/L	.5	-		zip
			sia 1 2 Diablementaria	08/09/2022	-	ND	.0157	NI -		CDF Analytical Cal
M-004	-	-	cis-1,3-Dichloropropene	06:58:00	1	ND Ib/day	-	No		culated_01262023.
	-	water	E624	08/12/2022	-	lb/day	.0875	-		zip
			DDT/DDD/DDE, Sum of P,P & O,P	08/09/2022	-	ND	.0021	N1 -		CDF Analytical Cal
M-004	-	-	Isomers	06:58:00	1	ND Ib/day	-	No		culated_01262023.
	-	water	E625	08/18/2022	-	lb/day	.0079	-		zip
			DDT/DDD/DDE, Sum of P,P & O,P	08/09/2022	-	1	.012	.		CDF_Analytical_Cal
M-004	-		Isomers	06:58:00	1	ND	-	No		culated_01262023.
	-	water	E625	08/18/2022	-	ug/L	.045	-		zip
			•	. 00/10/2022			_	•		

Location	Collection Method, Depth (m)	Sample Type, Matrix	Parameter, Analytical Method	Sample Date, Sample Time, Analysis Date	Field Rep, Lab Rep, Lab Batch	Result, Units	MDL, ML, RL	Review Priority, QA Codes	Comments	Data Source
	2 op ()	1144112		08/09/2022	-		.4			CDF Analytical Cal
M-004	-	- water	Di-n-butyl Phthalate E625	06:58:00	1	ND	-	No		culated_01262023.
	-	water	E025	08/18/2022	-	ug/L	5	-		zip
			Di-n-butyl Phthalate	08/09/2022	-	ND	.07	No		CDF_Analytical_Cal
M-004	-	- water	E625	06:58:00	1	Ib/day	-	INO		culated_01262023.
	_	Water	L023	08/18/2022	-	ib/day	.8752	_		zip
	_	_	Dibenzo(a,h)anthracene	08/09/2022	-	ND	.00875	No		CDF_Analytical_Cal
M-004	_	water	E625	06:58:00	1	lb/day	-	-		culated_01262023.
	_	Water	1023	08/18/2022	-	1b/day	.0175	_		zip
	_	_	Dibenzo(a,h)anthracene	08/09/2022	-	ND	.05	No		CDF_Analytical_Cal
M-004	_	water	E625	06:58:00	1	ug/L	-	-		culated_01262023.
		Water	1023	08/18/2022	-	ug/L	.1			zip
	_	_	Dibromochloromethane	08/09/2022	-	ND	.0298	No		CDF_Analytical_Cal
M-004	_	water	E624	06:58:00	1	lb/day	-	-		culated_01262023.
	_	Water	1024	08/12/2022	-	1b/day	.0875	_		zip
	_	_	Dibromochloromethane	08/09/2022	-	ND	.17	No		CDF_Analytical_Cal
M-004	_	water	E624	06:58:00	1	ug/L	-	-		culated_01262023.
	_	Water	1024	08/12/2022	-	ug/L	.5	_		zip
			Dichlorobenzenes, Sum	08/09/2022	-	ND	.45	No		CDF_Analytical_Cal
M-004	-	- water	E624	06:58:00	1	ug/L	-	INO		culated_01262023.
	•	Water	L024	08/12/2022	-	ug/L	1	_		zip
			Dichlorobenzenes, Sum	08/09/2022	-	ND	.0787	No		CDF_Analytical_Cal
M-004	-	- water	E624	06:58:00	1	Ib/day	-	INO		culated_01262023.
	-	Water	E024	08/12/2022	-	Ib/day	.175	_		zip
			Dishlarahramanathana	08/09/2022	-	ND	.08	No		CDF Analytical Cal
M-004	-	- water	Dichlorobromomethane E624	06:58:00	1		-	No		culated_01262023.
	-	water	E024	08/12/2022	-	ug/L	.5	-		zip
			Diahlarah sanasa sathara	08/09/2022	-	ND	.014	Na		CDF Analytical Cal
M-004	-	-	Dichlorobromomethane E624	06:58:00	1	ND	-	No		culated_01262023.
	-	water	E024	08/12/2022	-	lb/day	.0875	_		zip
			Dieldrin	08/09/2022	-	ND	.0004	No		CDF Analytical Cal
M-004	-	- water	E625	06:58:00	1	Ib/day	-	No		culated_01262023.
	-	water	E025	08/18/2022	-	I ID/day	.0018	_		zip
			Dieldrin	08/09/2022	-	ND	.002	No		CDF Analytical Cal
M-004	-	- water	E625	06:58:00	1		-	No		culated_01262023.
	•	Water	E023	08/12/2022	-	ug/L	.01	_		zip
			Diethyl Phthalate	08/09/2022	-	ND	.0875	No		CDF_Analytical_Cal
M-004	-	- water	E625	06:58:00	1	Ib/day	-	No		culated_01262023.
	-	Water	L023	08/18/2022	-	lb/day	.3501	_		zip
			Diethyl Phthalate	08/09/2022	-	ND	.5	No		CDF_Analytical_Cal
M-004	-	- water	E625	06:58:00	1	ug/L	-	INO		culated_01262023.
	-	Water	L023	08/18/2022	-	ug/L	2	_		zip
			Dimethyl Phthalate	08/09/2022	-	ND	.5	No		CDF_Analytical_Cal
M-004	-	- water	E625	06:58:00	1	ug/L	-	INO		culated_01262023.
	_	Water	2023	08/18/2022	-	ug/L	2	_		zip
			Dimethyl Phthalate	08/09/2022	-	ND	.0875	No		CDF_Analytical_Cal
M-004	-	- water	E625	06:58:00	1	lb/day	-	INO		culated_01262023.
		water	2023	08/18/2022	-	ib/day	.3501			zip
			Endosulfans, Sum	08/09/2022	-	ND	.011	No		CDF_Analytical_Cal
M-004		- water	E625	06:58:00	1	ug/L	-	100		culated_01262023.
		water	2023	08/18/2022	-	ug/L	.03			zip
			Endosulfans, Sum	08/09/2022	-	ND	.0019	No		CDF_Analytical_Cal
M-004		- water	E625	06:58:00	1	Ib/day	-	100		culated_01262023.
		water	2023	08/18/2022	-	ib/day	.0052			zip
			Endrin	08/09/2022	-	ND	.0005	No		CDF_Analytical_Cal
M-004	-	- water	E625	06:58:00	1	lb/day	-	- 140		culated_01262023.
		Water		08/18/2022	<u>-</u>	ib/day	.00175			zip

Location	Collection Method, Depth (m)	Sample Type, Matrix	Parameter, Analytical Method	Sample Date, Sample Time, Analysis Date	Field Rep, Lab Rep, Lab Batch	Result, Units	MDL, ML, RL	Review Priority, QA Codes	Comments	Data Source
Location	Depth (III)	Macrix		08/09/2022	-		.003		Comments	CDF_Analytical_Cal
M-004	-	-	Endrin	06:58:00	1	ND	.005	No		culated_01262023.
14 004	-	water	E625	08/18/2022	-	ug/L	.01	-		zip
				08/18/2022			.0175			CDF Analytical Cal
M-004	-	-	Ethylbenzene		1	ND	.01/3	No		culated_01262023.
141-004	-	water	E624	06:58:00	-	lb/day	.0875	-		zip
				08/12/2022		+	 			CDF Analytical Cal
M-004	-	-	Ethylbenzene	08/09/2022	- 1	ND	.1	No		
M-004	-	water	E624	06:58:00	1	ug/L	.5	-		culated_01262023.
				08/12/2022						
	-	_	Fluoranthene	08/09/2022	-	ND	.0035	No		CDF_Analytical_Cal
M-004	-	water	E625	06:58:00	1	lb/day	-	_		culated_01262023.
			1	08/18/2022	-	,,	.00875			zip
	_	_	Fluoranthene	08/09/2022	-	ND	.02	No		CDF_Analytical_Cal
M-004	_	water	E625	06:58:00	1	ug/L	-	-		culated_01262023.
		water	2023	08/18/2022	-	ug/L	.05			zip
			Fluorene	08/09/2022	-	ND	.0035	No		CDF_Analytical_Cal
M-004	_	water	E625	06:58:00	1	lb/day	-	-		culated_01262023.
	_	Water	1023	08/18/2022	-	ID/Gay	.0175	_		zip
			Fluence	08/09/2022	-	ND	.02	Na		CDF Analytical Cal
M-004	-	-	Fluorene	06:58:00	1	ND	-	No		culated_01262023.
	-	water	E625	08/18/2022	_	ug/L	.1	-		zip
				08/09/2022	-		.58			CDF Analytical Cal
M-004	-	-	Halomethanes, Sum	06:58:00	1	ND	'-	No		culated_01262023.
14 00 1	-	water	E624	08/12/2022	-	ug/L	1.5	-		zip
				08/09/2022			.1015			CDF Analytical Cal
M-004	-	-	Halomethanes, Sum		1	ND	1.1013	No		culated_01262023.
M-004	-	water	E624	06:58:00	-	lb/day	.2625	-		zip
				08/12/2022		+	.0007			CDF Analytical Cal
M 004	-	-	Heptachlor	08/09/2022	- 1	ND	.0007	No		
M-004	-	water	E625	06:58:00	1	lb/day	.0175	-		culated_01262023.
				08/18/2022	-	1				zip
	-	_	Heptachlor	08/09/2022	-	ND	.004	No		CDF_Analytical_Cal
M-004	-	water	E625	06:58:00	1	ug/L	-	_		culated_01262023.
				08/18/2022	-	- 3, -	.01			zip
	_	l <u>.</u>	Heptachlor Epoxide	08/09/2022	-	ND	.001	No		CDF_Analytical_Cal
M-004	_	water	E625	06:58:00	1	ug/L	-	"-		culated_01262023.
		water	2023	08/18/2022	-	ug/L	.01			zip
			Heptachlor Epoxide	08/09/2022	-	ND	.0002	No		CDF_Analytical_Cal
M-004	_	water	E625	06:58:00	1	lb/day	-	INO		culated_01262023.
	_	Water	1023	08/18/2022	-	ID/Gay	.0018	_		zip
			Have able as be as a second	08/09/2022	-	ND	.1751	Na		CDF Analytical Cal
M-004	-	-	Hexachlorobenzene	06:58:00	1	ND	-	No		culated_01262023.
	-	water	E625	08/18/2022	-	lb/day	.1751	-		zip
				08/09/2022	-		1			CDF Analytical Cal
M-004	-	<u> </u>	Hexachlorobenzene	06:58:00	1	ND	_	No		culated_01262023.
	-	water	E625	08/18/2022	-	ug/L	1	-		zip
				08/09/2022	-		.07			CDF Analytical Cal
M-004	-	-	Hexachlorobutadiene	06:58:00	1	ND	.07	No		culated_01262023.
1.1 50-	-	water	E625	08/18/2022	-	lb/day	.1751	-		zip
						+	.4	1		CDF Analytical Cal
M-004	-	-	Hexachlorobutadiene	08/09/2022	1	ND	.4	No		culated_01262023.
141-004	-	water	E625	06:58:00	_ _	ug/L	1 1	-		zip
<u> </u>			+	08/18/2022		+				
14004	-	-	Hexachlorocyclopentadiene	08/09/2022	- 1	ND	.9	No		CDF_Analytical_Cal
M-004	-	water	E625	06:58:00	1	ug/L	1 1	-		culated_01262023.
				08/18/2022	-	+ -	1 1			zip
,, ,, ,	_	_	Hexachlorocyclopentadiene	08/09/2022	-	ND	.1575	No		CDF_Analytical_Cal
M-004	_	water	E625	06:58:00	1	lb/day	175	-		culated_01262023.
		L	1	08/18/2022	-	1,	.175			zip

Location	Collection Method, Depth (m)	Sample Type, Matrix	Parameter, Analytical Method	Sample Date, Sample Time, Analysis Date	Field Rep, Lab Rep, Lab Batch	Result, Units	MDL, ML, RL	Review Priority, QA Codes	Comments	Data Source
				08/09/2022	-	ND	.4			CDF Analytical Cal
M-004	-	- water	Hexachloroethane E625	06:58:00	1	นg/L	-	No		culated_01262023.
	,	water	E023	08/18/2022	-	ug/L	1	-		zip
			Hexachloroethane	08/09/2022	-	ND	.07	No		CDF_Analytical_Cal
M-004	_	- water	E625	06:58:00	1	Ib/day	-	INO		culated_01262023.
	_	water	2023	08/18/2022	-	1b/day	.1751	_		zip
	_	_	Indeno (1,2,3-cd) Pyrene	08/09/2022	-	ND	.05	No		CDF_Analytical_Cal
M-004	_	water	E625	06:58:00	1	ug/L	-	-		culated_01262023.
	_	Water	2023	08/18/2022	-	ug/L	.05	_		zip
	_	_	Indeno (1,2,3-cd) Pyrene	08/09/2022	-	ND	.0088	No		CDF_Analytical_Cal
M-004	_	water	E625	06:58:00	1	lb/day	-	-		culated_01262023.
	_	Water	2023	08/18/2022	-	1b/day	.0875	_		zip
			Isophorone	08/09/2022	-	ND	.0875	No		CDF_Analytical_Cal
M-004	_	water	E625	06:58:00	1	lb/day	-	INO		culated_01262023.
	_	water	2023	08/18/2022	-	1b/day	.17505	_		zip
			Icanharana	08/09/2022	-	ND	.5	No		CDF_Analytical_Cal
M-004	-	- water	Isophorone E625	06:58:00	1		-	NO		culated_01262023.
	-	water	E023	08/18/2022	-	ug/L	1	-		zip
			Mathemas Chlarida	08/09/2022	-	ND	.12	Na		CDF Analytical Cal
M-004	-	-	Methylene Chloride	06:58:00	1	ND	-	No		culated 01262023.
	-	water	E624	08/12/2022	-	ug/L	.5	-		zip –
				08/09/2022	-	1	.021			CDF Analytical Cal
M-004	-		Methylene Chloride	06:58:00	1	ND	-	No		culated_01262023.
	-	water	E624	08/12/2022	-	lb/day	.0875	-		zip
				08/09/2022	-		.5			CDF Analytical Cal
M-004	-	-	N-Nitrosodi-n-Propylamine	06:58:00	1	ND	.5	No		culated_01262023.
	-	water	E625	08/18/2022	-	ug/L	5	-		zip
				08/09/2022	-		.0875			CDF Analytical Cal
M-004	-	-	N-Nitrosodi-n-Propylamine	06:58:00	1	ND	.00,5	No		culated_01262023.
1.00.	-	water	E625	08/18/2022	-	lb/day	.8752	-		zip
				08/09/2022	_	+	.7			CDF Analytical Cal
M-004	-	-	N-Nitrosodimethylamine	06:58:00	1	ND	_ '	No		culated_01262023.
11 00 1	-	water	E625	08/18/2022	-	ug/L	5	-		zip
				08/09/2022	_	+	.1225			CDF Analytical Cal
M-004	-	-	N-Nitrosodimethylamine	06:58:00	1	ND	.1223	No		culated_01262023.
14 004	-	water	E625	08/18/2022	-	lb/day	.8752	-		zip
							.1225			CDF Analytical Cal
M-004	-	-	N-Nitrosodiphenylamine	08/09/2022	1	ND	.1223	No		culated_01262023.
141-004	-	water	E625	06:58:00 08/18/2022	_	lb/day	.175	-		zip
					_		.7			CDF Analytical Cal
M-004	-	-	N-Nitrosodiphenylamine	08/09/2022	1	ND	.,	No		culated_01262023.
141-004	-	water	E625	06:58:00	-	ug/L	1 1	-		zip
				08/18/2022			.5			CDF Analytical Cal
M-004	-	-	Nitrobenzene	08/09/2022	- 1	ND	.5	No		culated_01262023.
141-004	-	water	E625	06:58:00	-	ug/L	1 1	-		zip
				08/18/2022		+	0075303			CDF Analytical Cal
M-004	-	-	Nitrobenzene	08/09/2022	- 1	ND	.0875283	No		culated_01262023.
141-004	-	water	E625	06:58:00	1	lb/day	.1750566	-		zip
			+	08/18/2022	-	+				
M 004	-	-	PCB-1016	08/09/2022	- 1	ND	.0053	No		CDF_Analytical_Cal
M-004	-	water	E625	06:58:00	1	lb/day	.0175	-		culated_01262023.
			+	08/18/2022	-	 				zip
14 004	_	_	PCB-1016	08/09/2022	-	ND	.03	No		CDF_Analytical_Cal
M-004	_	water	E625	06:58:00	1	ug/L		-		culated_01262023.
				08/18/2022	-	ļ	.1			zip
	_	_	PCB-1221	08/09/2022	-	ND	.03	No		CDF_Analytical_Cal
M-004	-	water	E625	06:58:00	1	ug/L	-	-		culated_01262023.
		l		08/18/2022	-	1 3,-	.1			zip

Location	Collection Method, Depth (m)	Sample Type, Matrix	Parameter, Analytical Method	Sample Date, Sample Time, Analysis Date	Field Rep, Lab Rep, Lab Batch	Result, Units	MDL, ML, RL	Review Priority, QA Codes	Comments	Data Source
Location	Depth (III)	Pidelix		08/09/2022	-		.0053		Comments	CDF Analytical Cal
M-004	-		PCB-1221	06:58:00	1	ND		No		culated_01262023.
	-	water	E625	08/18/2022	-	lb/day	.0175	-		zip
			202 1000	08/09/2022	-		.0053			CDF Analytical Cal
M-004	-	-	PCB-1232	06:58:00	1	ND	-	No		culated_01262023.
	-	water	E625	08/18/2022	-	lb/day	.0175	-		zip –
			DCD 1222	08/09/2022	-	ND	.03	NI.		CDF Analytical Cal
M-004	-	-	PCB-1232	06:58:00	1	ND	-	No		culated 01262023.
	-	water	E625	08/18/2022	-	ug/L	.1	-		zip –
			DCD 1242	08/09/2022	-	ND	.03	NI.		CDF Analytical Cal
M-004	-	-	PCB-1242 E625	06:58:00	1	ND	-	No		culated_01262023.
	-	water	E025	08/18/2022	-	ug/L	.1	-		zip
			DCD 1242	08/09/2022	-	ND	.0053	NI.		CDF Analytical Cal
M-004	-	-	PCB-1242	06:58:00	1	ND	-	No		culated_01262023.
	-	water	E625	08/18/2022	-	lb/day	.0175	-		zip –
			DCD 1240	08/09/2022	-	N.S	.03			CDF Analytical Cal
M-004	-		PCB-1248	06:58:00	1	ND "	-	No		culated_01262023.
	-	water	E625	08/18/2022	-	ug/L	.1	-		zip
				08/09/2022	-		.0053			CDF Analytical Cal
M-004	-	-	PCB-1248	06:58:00	1	ND	-	No		culated_01262023.
	-	water	E625	08/18/2022	-	lb/day	.0175	-		zip
				08/09/2022	_		.0053			CDF Analytical Cal
M-004	-	-	PCB-1254	06:58:00	1	ND	0033	No		culated_01262023.
	-	water	E625	08/18/2022	-	lb/day	.0175	-		zip
				08/09/2022		1	.03			CDF Analytical Cal
M-004	-	-	PCB-1254	06:58:00	1	ND	.05	No		culated_01262023.
	-	water	E625	08/18/2022	-	ug/L	.1	-		zip
				08/09/2022	_	1	.03			CDF Analytical Cal
M-004	-	-	PCB-1260	06:58:00	1	ND	.05	No		culated_01262023.
" 00+	-	water	E625	08/18/2022	-	ug/L	.1	-		zip
				08/09/2022	_	1	.0053			CDF Analytical Cal
M-004	-	-	PCB-1260	06:58:00	1	ND	.0055	No		culated_01262023.
" 00+	-	water	E625	08/18/2022	-	lb/day	.0175	-		zip
				08/09/2022	_		.02			CDF Analytical Cal
M-004	-	-	Phenanthrene	06:58:00	1	ND	.02	No		culated_01262023.
" 00+	-	water	E625	08/18/2022	-	ug/L	.05	-		zip
				08/09/2022			.0035			CDF_Analytical_Cal
M-004	-	-	Phenanthrene	06:58:00	1	ND	.0055	No		culated_01262023.
141-00-	-	water	E625	08/18/2022	-	lb/day	.0875	-		zip
				08/18/2022			.4726			CDF_Analytical_Cal
M-004	-	-	Phenols, Chlorinated		1	ND	.4720	No		culated_01262023.
141-004	-	water	E625	06:58:00	-	lb/day	2.4507	-		zip
				08/18/2022 08/09/2022			2.7			CDF_Analytical_Cal
M-004	-	-	Phenols, Chlorinated	06:58:00	1	ND	2.7	No		culated_01262023.
141-00-	-	water	E625	08/18/2022	_	ug/L	14	-		zip
				08/09/2022			7.4			CDF Analytical Cal
M-004	-	-	Phenols, Non-chlorinated		1	ND	'.4	No		culated 01262023.
141-004	-	water	E625	06:58:00	-	ug/L	33	-		zip
				08/18/2022		+	1.295			CDF Analytical Cal
M-004	-	-	Phenols, Non-chlorinated	08/09/2022	- 1	ND	1.293	No		culated 01262023.
141-004	-	water	E625	06:58:00 08/18/2022	-	lb/day	5.776	-		zip
 			Polychlorinated Biphenyls (PCBs),			+	.21			CDF Analytical Cal
M-004	-	-	Sum	08/09/2022	1	ND	'21	No		culated_01262023.
141-004	-	water	E625	06:58:00	- 1	ug/L	.7	-		zip
			Polychlorinated Biphenyls (PCBs),	08/18/2022		+	.0368	-		CDF_Analytical_Cal
M-004	-	-	Sum	08/09/2022	- 1	ND	.0308	No		culated_01262023.
141-004	-	water	E625	06:58:00	1 -	lb/day	.1225	-		zip
		l	1 2023	08/18/2022	-	<u> </u>	ا ،۱۲۲۶			²¹

Location	Collection Method, Depth (m)	Sample Type, Matrix	Parameter, Analytical Method	Sample Date, Sample Time, Analysis Date	Field Rep, Lab Rep, Lab Batch	Result, Units	MDL, ML, RL	Review Priority, QA Codes	Comments	Data Source
20041011	Dopul (III)	I Iddi IX	Polynuclear Aromatic Hydrocarbons	08/09/2022	-	İ	.47		Comments	CDF Analytical Cal
M-004	-	-	(PAHs)	06:58:00	1	ND	-	No		culated 01262023.
	-	water	E625	08/18/2022	-	ug/L	3.8	-		zip
			Polynuclear Aromatic Hydrocarbons	08/09/2022	-	ND	.0823	No		CDF Analytical Cal
M-004	-	-	(PAHs)	06:58:00	1	ND lb/day	-	No		culated_01262023.
	•	water	E625	08/18/2022	-	ib/day	.6652	-		zip
	_	_	Pyrene	08/09/2022	-	ND	.02	No		CDF_Analytical_Cal
M-004	_	water	E625	06:58:00	1	ug/L	-	-		culated_01262023.
		Water	2023	08/18/2022	-	ug/L	.05			zip
	_	_	Pyrene	08/09/2022	-	ND	.0035	No		CDF_Analytical_Cal
M-004	_	water	E625	06:58:00	1	lb/day	-	-		culated_01262023.
		Water.	2023	08/18/2022	-	15,44,	.0875			zip
	_	_	Radiation, Gross Alpha	08/09/2022	-	= 0.987	-	No		CDF_Analytical_Cal
M-004	_	water	E900	06:58:00	1	PCi/L	-	-		culated_01262023.
				08/22/2022	-	1,-	-			zip
	_	_	Radiation, Gross Beta	08/09/2022	-	= 23.2	-	No		CDF_Analytical_Cal
M-004	_	water	E900	06:58:00	1	PCi/L	-	-		culated_01262023.
				08/24/2022	-	1,-	-			zip
	_	_	Radioactivity	08/09/2022	-	= 24.19	-	No		CDF_Analytical_Cal
M-004	_	water	E900	06:58:00	1	PCi/L	-	-		culated_01262023.
				08/24/2022	-		-			zip
			TCDD Facility alone	08/09/2022	-	DNQ	.000002	N-		CDF Analytical Cal
M-004	-	-	TCDD Equivalents	06:58:00	1	0.0000000	-	No		culated 01262023.
	-	water	SW8280	09/06/2022	-	03 lb/day	.0001	-		zip
						DNQ				
	_	_	TCDD Equivalents	08/09/2022	-	0.0000000	.000048	No		CDF_Analytical_Cal
M-004	_	water	SW8280	06:58:00	1	19	-	-		culated_01262023.
				09/06/2022	-	ug/L	.000577			zip
			Tetrachloroethene	08/09/2022	-	ND	.19	No		CDF_Analytical_Cal
M-004	-	- water	E624	06:58:00	1	ug/L	-	INO		culated_01262023.
	-	Water	L024	08/12/2022	-	ug/L	.5	-		zip
	_	_	Tetrachloroethene	08/09/2022	-	ND	.0333	No		CDF_Analytical_Cal
M-004	_	water	E624	06:58:00	1	lb/day	-	-		culated_01262023.
		Water	LUZ-7	08/12/2022	-	16/ddy	.0875			zip
	_	_	Thallium, Total Recoverable	08/09/2022	-	ND	.03	No		CDF_Analytical_Cal
M-004	_	water	E200.8	06:58:00	1	ug/L	-	-		culated_01262023.
				08/12/2022	-		.2			zip
	_	_	Thallium, Total Recoverable	08/09/2022	-	ND	.0053	No		CDF_Analytical_Cal
M-004	-	water	E200.8	06:58:00	1	lb/day	-	-		culated_01262023.
				08/12/2022	-	 ' '	.035			zip
	-	_	Toluene	08/09/2022	-	ND	.19	No		CDF_Analytical_Cal
M-004	-	water	E624	06:58:00	1	ug/L	-	-		culated_01262023.
				08/12/2022	-	 	.5			zip
M 004	_	_	Toluene	08/09/2022	-	ND	.0332	No		CDF_Analytical_Cal
M-004	-	water	E624	06:58:00	1	lb/day	- .08752	-		culated_01262023.
				08/12/2022	-					zip
M 004	-	-	Toxaphene	08/09/2022	- 1	ND	.07	No		CDF_Analytical_Cal
M-004	-	water	E625	06:58:00	1	lb/day	- .0875	-		culated_01262023.
				08/18/2022		+		 		CDF Analytical Cal
M-004	-	-	Toxaphene	08/09/2022	1	ND	.4	No		culated_01262023.
141-004	-	water	E625	06:58:00	-	ug/L	- .5	-		zip
				08/18/2022	<u> </u>	1	.0004	 		CDF Analytical Cal
M-004	-	-	Tributyltin (TBT)	08/09/2022	- 1	ND	.0004	No		culated_01262023.
141-004	-	water	DU	06:58:00 08/17/2022	_	lb/day	.00087	-		zip
<u> </u>		l	1	08/11/2077			.00007	L		1-1P

Location	Collection Method, Depth (m)	Sample Type, Matrix	Parameter, Analytical Method	Sample Date, Sample Time, Analysis Date	Field Rep, Lab Rep, Lab Batch	Result, Units	MDL, ML, RL	Review Priority, QA Codes	Comments	Data Source
M-004	- -	- water	Tributyltin (TBT) DU	08/09/2022 06:58:00 08/17/2022	1 -	ND ug/L	.0023 - .005	No -		CDF_Analytical_Cal culated_01262023. zip
M-004		- water	Trichloroethene E624	08/09/2022 06:58:00 08/12/2022	- 1 -	ND ug/L	.2 - .5	No -		CDF_Analytical_Cal culated_01262023. zip
M-004	- -	- water	Trichloroethene E624	08/09/2022 06:58:00 08/12/2022	1 -	ND lb/day	.035 - .0875	No -		CDF_Analytical_Cal culated_01262023. zip
M-004		- water	Vinyl Chloride E624	08/09/2022 06:58:00 08/12/2022	- 1 -	ND ug/L	.25 - .5	No -		CDF_Analytical_Cal culated_01262023. zip
M-004	- -	- water	Vinyl Chloride E624	08/09/2022 06:58:00 08/12/2022	1	ND lb/day	.0437 - .0875	No -		CDF_Analytical_Cal culated_01262023. zip

Calculated Values

Location	Collection Method, Depth (m)	Sample Type, Matrix	Parameter, Calculation Type	Sample Date, Sample Time, Analysis Date	Field Rep, Lab Rep, Lab Batch	Result, Units	MDL, ML, RL	Review Priority, QA Codes	Comments	Data Source
M-004	- -	- water	1,1,1-Trichloroethane 30-Day Average	08/09/2022 06:58:00 08/12/2022	- 1 -	ND lb/day	.033 - .0875	No -		CDF_Analytical_Cal culated_01262023. zip
M-004	- -	- water	1,1,1-Trichloroethane 30-Day Average	08/09/2022 06:58:00 08/12/2022	1	ND ug/L	.19 - .5	No -		CDF_Analytical_Cal culated_01262023. zip
M-004	- -	- water	1,1,2,2-Tetrachloroethane 30-Day Average	08/09/2022 06:58:00 08/12/2022	- 1 -	ND ug/L	.15 - .5	No -		CDF_Analytical_Cal culated_01262023. zip
M-004	- -	- water	1,1,2,2-Tetrachloroethane 30-Day Average	08/09/2022 06:58:00 08/12/2022	- 1 -	ND lb/day	.02625 - .0875	No -		CDF_Analytical_Cal culated_01262023. zip
M-004	- -	- water	1,1,2-Trichloroethane 30-Day Average	08/09/2022 06:58:00 08/12/2022	- 1 -	ND lb/day	.028 - .0875283	No -		CDF_Analytical_Cal culated_01262023. zip
M-004	- -	- water	1,1,2-Trichloroethane 30-Day Average	08/09/2022 06:58:00 08/12/2022	- 1 -	ND ug/L	.16 - .5	No -		CDF_Analytical_Cal culated_01262023. zip
M-004		- water	1,1-Dichloroethylene 30-Day Average	08/09/2022 06:58:00 08/12/2022	1 -	ND ug/L	.21 - .5	No -		CDF_Analytical_Cal culated_01262023. zip
M-004		- water	1,1-Dichloroethylene 30-Day Average	08/09/2022 06:58:00 08/12/2022	- 1 -	ND lb/day	.0368 - .0875	No -		CDF_Analytical_Cal culated_01262023. zip
M-004		- water	1,2-Dichlorobenzene 30-Day Average	08/09/2022 06:58:00 08/12/2022	- 1 -	ND ug/L	.27 - .5	No -		CDF_Analytical_Cal culated_01262023. zip
M-004		- water	1,2-Dichlorobenzene 30-Day Average	08/09/2022 06:58:00 08/12/2022	- 1 -	ND lb/day	.0472 - .0875	No -		CDF_Analytical_Cal culated_01262023. zip
M-004		- water	1,2-Dichloroethane 30-Day Average	08/09/2022 06:58:00 08/12/2022	- 1 -	ND lb/day	.0122 - .0875	No -		CDF_Analytical_Cal culated_01262023. zip
M-004		- water	1,2-Dichloroethane 30-Day Average	08/09/2022 06:58:00 08/12/2022	- 1 -	ND ug/L	.07 - .5	No -		CDF_Analytical_Cal culated_01262023. zip
M-004	-	- water	1,2-Diphenylhydrazine 30-Day Average	08/09/2022 06:58:00 08/18/2022	- 1 -	ND lb/day	.0875 - .1751	No -		CDF_Analytical_Cal culated_01262023. zip

Location	Collection Method, Depth (m)	Sample Type, Matrix	Parameter, Calculation Type	Sample Date, Sample Time, Analysis Date	Field Rep, Lab Rep, Lab Batch	Result, Units	MDL, ML, RL	Review Priority, QA Codes	Comments	Data Source
200011011	Deptii (iii)			08/09/2022	-		.5		Comments	CDF Analytical Cal
M-004	-	-	1,2-Diphenylhydrazine	06:58:00	1	ND	-	No		culated_01262023.
	-	water	30-Day Average	08/12/2022	-	ug/L	1	-		zip
			1.2 Diablanda anno	08/09/2022	-	ND	.18	N1 -		CDF Analytical Cal
M-004	-	-	1,3-Dichlorobenzene	06:58:00	1	ND	-	No		culated_01262023.
	-	water	30-Day Average	08/12/2022	-	ug/L	.5	-		zip
			1,3-Dichlorobenzene	08/09/2022	-	ND	.0315	No		CDF Analytical Cal
M-004	-	- water	30-Day Average	06:58:00	1	lb/day	-	INO		culated_01262023.
	-	watei	30-Day Average	08/12/2022	-	ID/day	.0875	-		zip
			1,4-Dichlorobenzene	08/09/2022	-	ND	.0315	No		CDF_Analytical_Cal
M-004	_	- water	30-Day Average	06:58:00	1	lb/day	-	INO		culated_01262023.
	-	Water	30-Day Average	08/12/2022	-	1b/day	.0875	_		zip
			1,4-Dichlorobenzene	08/09/2022	-	ND	.18	No		CDF_Analytical_Cal
M-004	-	- water	30-Day Average	06:58:00	1	ug/L	-	INO		culated_01262023.
	-	Water	30-Day Average	08/12/2022	-	ug/L	.5	_		zip
			2,4,6-Trichlorophenol	08/09/2022	-	ND	.4	No		CDF_Analytical_Cal
M-004	-	- water	30-Day Average	06:58:00	1	ug/L	-	INO		culated_01262023.
	-	Water	30-Day Average	08/18/2022	-	ug/L	5	_		zip
			2,4,6-Trichlorophenol	08/09/2022	-	ND	.07	No		CDF_Analytical_Cal
M-004	-	- water	30-Day Average	06:58:00	1	lb/day	-	INO		culated_01262023.
	-	water	30-Day Average	08/18/2022	-	ID/day	.8753	-		zip
			2,4-DDD	08/09/2022	-	ND	.003	No		CDF Analytical Cal
M-004	-	- water		06:58:00	1	ND	-	No		culated_01262023.
	-	water	30-Day Average	08/18/2022	-	ug/L	.005	-		zip
			2.4.000	08/09/2022	-	ND	.0005	No		CDF Analytical Cal
M-004	-	-	2,4-DDD	06:58:00	1	ND	-	No		culated_01262023.
	-	water	30-Day Average	08/18/2022	-	lb/day	.0009	-		zip
			2.4.DDF	08/09/2022	-	ND	.0004	No		CDF Analytical Cal
M-004	-	- water	2,4-DDE	06:58:00	1		-	No		culated_01262023.
	-	water	30-Day Average	08/18/2022	-	lb/day	.0009	-		zip
			2,4-DDE	08/09/2022	-	ND	.002	No		CDF_Analytical_Cal
M-004	-	- water	30-Day Average	06:58:00	1	ug/L	-	INO		culated_01262023.
	-	Water	30-Day Average	08/18/2022	-	ug/L	.005	_		zip
			2,4-DDT	08/09/2022	-	ND	.001	No		CDF_Analytical_Cal
M-004	_	- water	30-Day Average	06:58:00	1	ug/L	-	INO		culated_01262023.
	_	Water	30-Day Average	08/18/2022	-	ug/L	.005			zip
			2,4-DDT	08/09/2022	-	ND	.0002	No		CDF_Analytical_Cal
M-004	_	water	30-Day Average	06:58:00	1	lb/day	-	INO		culated_01262023.
	-	Water	30-Day Average	08/18/2022	-	1b/day	.0009	_		zip
	_	_	2,4-Dinitrophenol	08/09/2022	-	ND	.3501	No		CDF_Analytical_Cal
M-004	_	water	30-Day Average	06:58:00	1	lb/day	-	-		culated_01262023.
		Water	30 Day Average	08/18/2022	-	15/day	.8752			zip
	_	_	2,4-Dinitrophenol	08/09/2022	-	ND	2	No		CDF_Analytical_Cal
M-004	- -	water	30-Day Average	06:58:00	1	ug/L	-	-		culated_01262023.
		Water	30 Bdy Average	08/18/2022	-	ug/L	5			zip
	_	_	2,4-Dinitrotoluene	08/09/2022	-	ND	.9	No		CDF_Analytical_Cal
M-004	_	water	30-Day Average	06:58:00	1	ug/L	-	-		culated_01262023.
		***************************************	23 2a, Attenage	08/12/2022	-	"g,"	5			zip
	_	_	2,4-Dinitrotoluene	08/09/2022	-	ND	.1576	No		CDF_Analytical_Cal
M-004	-	water	30-Day Average	06:58:00	1	lb/day		-		culated_01262023.
		***************************************	23 2a, Attenage	08/18/2022	-	1.5,449	.8753			zip
	_	_	3,3-Dichlorobenzidine	08/09/2022	-	ND	5	No		CDF_Analytical_Cal
M-004	_	water	30-Day Average	06:58:00	1	ug/L	-	-		culated_01262023.
		***************************************	23 2a, Attenage	08/18/2022	-	"g,"	5			zip
	_	_	3,3-Dichlorobenzidine	08/09/2022	-	ND	.8752	No		CDF_Analytical_Cal
M-004	-	water	30-Day Average	06:58:00	1	lb/day		-		culated_01262023.
		Water .	July / Weilage	08/18/2022	-	1 .5,449	.8752			zip

M-004 -	Location	Collection Method, Depth (m)	Sample Type, Matrix	Parameter, Calculation Type	Sample Date, Sample Time, Analysis Date	Field Rep, Lab Rep, Lab Batch	Result, Units	MDL, ML, RL	Review Priority, QA Codes	Comments	Data Source
M-004 -	Location	Depth (III)	Macrix			-	i e		`	Commencs	
M-004	M-004	-	-			1		001	No		
Mode		-	water	30-Day Average		-	ug/L	.01	-		
M-904						_					
M-004 -	M-004	-	-			1		-	No		
Mode		-	water	30-Day Average		-	ID/day	.0018	-		
M-004 - water 30-Day Average 06:58:00 1 lg/day .0018 - 20 20 20 20 20 20 20				4.4.005		-	ND	.0002	No		CDF Analytical Cal
M-004 Mater A4-DDE	M-004	-	- water			1		-	INO		
M-004 Water 30 Day Average 06:58:00 1 Mg/L 0.1 7 No CDF Analytical Call CDF Analytical C		-	watei	30-Day Average		-	1b/day	.0018	-		
M-004 . water 30-Day Average 065-89.00 1 wg/L .01 . Classed 0.176-020.2 .				4.4 DDE	08/09/2022	-	ND	.001	No		CDF_Analytical_Cal
M-004 -	M-004	_	- water		06:58:00	1		-	-		culated_01262023.
M-004 Water 30-Day Average 06:58:00 1 ND 0007 No CDF_Analytical_Cal_And_Day Average 06:58:00 1 ND 0007 No CDF_Analytical_Cal_And_Day Average 06:58:00 1 ND 0007 No CDF_Analytical_Cal_And_Day Average 06:58:00 1 ND 0008 No CDF_Analytical_Cal_And_Day Average 06:58:00 1 ND 03501 NO CDF_Analytical_Cal_And		_	Water	30-Day Average	08/18/2022	-	ug/L				
M-004 Mater 30-Day Average 06:59:00 Mater 07:50:00 Mater		_	_	4 4-DDT		-	ND	.004	No		
M-004 - - - - - - - -	M-004	_	water			1		-	-		
M-004 - water 30-Day Average 06-58-00 1 lb/day .0018 - .0018 - .0018 .00			Water	30 Buy Average		-	49/2				
M-004 - water 30-Day Average OB/38/2022 - ND ND ND CDF, Analytical Cal culated 0126/2023 ND OB/38/2022 -		_	_	4 4-DDT			ND	.0007	No		
M-004 - Ac-plnitro-2-methylphenol 08/18/2022 - ND .3501 No CDF_Analytical Call Subject S	M-004	_	water					-	-		
M-004 - water 30-Day Average 06:58:00 1 lol/day 8752 -				Jo July / Worldgo		-	12, 22,				
M-004 - water 30-Day Average 06:38:00 -		_	_	4.6-Dinitro-2-methylphenol		-	l _{ND}	.3501	No		CDF_Analytical_Cal
M-004 - - -	M-004	_	water			1			-		
M-004				or ray menage		-	,,				
M-004 - water 30-Day Average 06:58:00 - ug/L 5 . Clusted 01:252023.		_	_	4.6-Dinitro-2-methylphenol		-	l _{ND}	2	No		
M-004 - Acenaphthylene 08/09/2022 - ND .0035 No CDF_Analytical_Cal_culated_01262023. No	M-004	_	water			1			-		
M-004 - water 30-bay Average 06:58:00 1 bl/day No culated 01262023. zip						-	1 3,				
M-004 - water 30-Day Average 06:58:00 1 lb/day 0.35 - Clinated 01:26:2023. Zip		_	_	Acenaphthylene		-	l _{ND}	.0035	No		
M-004	M-004	-	water			1		- 025	-		
M-004 - water 30-Day Average 06:58:00 1 wg/L 2 - zip				, ,			 				
M-004 - water 30-Day Average 06:38:00 1 ug/L 2 - zip	M 004	-	-	Acenaphthylene			ND	.02	No		
M-004 - Acrolein 08/09/2022 - ND 8.1 No CDF_Analytical_Cal_culated_01262023. M-004 - Acrolein 08/09/2022 - ND 1.417 No CDF_Analytical_Cal_culated_01262023. M-004 - Acrolein 08/09/2022 - ND 1.417 No CDF_Analytical_Cal_culated_01262023. M-004 - Acrolein 06/58-00 1 ND 1.417 No CDF_Analytical_Cal_culated_01262023. M-004 - Acrylonitrile 08/09/2022 - ND 1.312 No CDF_Analytical_Cal_culated_01262023. M-004 - Acrylonitrile 08/09/2022 - ND 1.312 No CDF_Analytical_Cal_culated_01262023. M-004 - Acrylonitrile 08/09/2022 - ND 1.5132 No CDF_Analytical_Cal_culated_01262023. M-004 - Acrylonitrile 08/09/2022 - ND 75 No CDF_Analytical_Cal_culated_01262023. M-004 - Acrylonitrile 08/09/2022 - ND 75 No CDF_Analytical_Cal_culated_01262023. M-004 - Acrylonitrile 08/09/2022 - ND 75 No CDF_Analytical_Cal_culated_01262023. M-004 - Acrylonitrile 08/09/2022 - ND 75 No CDF_Analytical_Cal_culated_01262023. M-004 - Acrylonitrile 08/09/2022 - ND 75 No CDF_Analytical_Cal_culated_01262023. M-004 - Acrylonitrile 08/09/2022 - ND 75 No CDF_Analytical_Cal_culated_01262023. M-004 - Aldrin 08/09/2022 - ND 70 No CDF_Analytical_Cal_culated_01262023. M-004 - Aldrin 08/09/2022 - ND 70 No CDF_Analytical_Cal_culated_01262023. M-004 - Ammonia, Total (as N) 11/02/2022 - 4300 No CDF_Analytical_Cal_culated_01262023. M-004 - Ammonia, Total (as N) 11/02/2022 - 4300 No CDF_Analytical_Cal_culated_01262023. M-004 - Ammonia, Total (as N) 11/02/2022 - 4300 No CDF_Analytical_Cal_culated_01262023. M-004 - Ammonia, Total_(as N) 11/02/2022 - 4300 No CDF_Analytical_Cal_culated_01262023. M-004 - Ammonia, Total_(as N) 11/02/2022 - 4300 No CDF_Analytical_Cal_culated_01262023. M-004 - Ammonia, Total_(as N) 11/02/2022 - 4300 No CDF_Analytical_Cal_culated_01262023. M-004 - Ammonia, Total_Cal_culated_01262023. M-004 - Ammonia, Total	M-004	-	water				ug/L	-	-		
M-004 - Water 30-Day Average 06:58:00 1 Wg/L 2 -											
M-004 - Water 30-Day Average 08/12/2022 - ND .1417 No CDF_Analytical_Cal_cal_cal_cal_cal_cal_cal_cal_cal_cal_c	M 004	-	-	Acrolein		- 1	ND	.81	No		
M-004 - - Acrolein 08/09/2022 - ND 1417 No CDF Analytical Cal culated 0126203. 2ip CDF	141-004	-	water	30-Day Average		_	ug/L	2	-		
M-004 - Water 30-Day Average 06:58:00 1 Ib/day 3:501 - zip							+				
M-004 Company M-004 Co	M 004	-	-	Acrolein				1 .141/	No		
M-004 - - - Acrylonitrile 08/09/2022 - ND 1312 No CDF_Analytical_Cal culated_01262023.	141-004	-	water	30-Day Average			lb/day	3501	-		
M-004 - water 30-Day Average 06:58:00 1 lb/day .3501 - NU culated 01262023. zip 2 2							+				
M-004 - Acrylonitrile 08/09/2022 - ND 75 No CDF_Analytical_Cal Cal C	_{M-004}	-	-	Acrylonitrile		1		.1312	No		
M-004	141-004	-	water	30-Day Average		-	lb/day	3501	-		
M-004 -											
M-004 -	M-004	-	-			1		./5	No		
M-004 - Aldrin 30-Day Average	" 00+	-	water	30-Day Average		-	ug/L) 2	-		
M-004							†				
M-004 -	M-004	-						.005	No		
M-004	'''	-	water	30-Day Average			ug/L	.005	-		
M-004						_	1				
M-004 - - Ammonia, Total (as N) 11/02/2022 - - 4300 ug/L 110 - - CDF_Analytical_Cal culated_01262023. - 4300 ug/L 110 - CDF_Analytical_Cal culated_01262023. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -	M-004	-	-			1		-	No		
M-004 - Vater Ammonia, Total (as N) - Water Ammonia, Total (as N)		-	water	30-Day Average		-	lb/day	.00087	-		
M-004 - Water Water						-	4222		1		
M-004 - Ammonia, Total (as N) 11/02/2022 - Ug/L 110 - zip	M-004	-	-				1	-	NO		culated 01262023.
M-004 -		-	water	o-Moutu Median		-	l ug/L	110	-		
M-004 - water water				Amendania Tatal (as NO		-	4200		NI.		
M-004 - Water 6-Month Median 11/15/2022 - ug/L 110 - zip	M-004	-	-					-	NO		
M-004 - Ammonia, Total (as N) 11/02/2022 - = 7355 114 No CDF_Analytical_Cal culated_01262023.		-	water	o-Moutu Median			l ug/L	110	-		
M-004				Assessmin Tabal (N)		-	7255				
I I - I WATER IN-MONTH MEDIAN I ***-*** I I ID/OAV I I - I I I I I I I I I I I I I I	M-004	-				1		-	No		
		-	water	o-Moutu Median	11/15/2022		I ib/day	181	-		zip

Location	Collection Method, Depth (m)	Sample Type, Matrix	Parameter, Calculation Type	Sample Date, Sample Time, Analysis Date	Field Rep, Lab Rep, Lab Batch	Result, Units	MDL, ML, RL	Review Priority, QA Codes	Comments	Data Source
Location	Depth (III)	Machix		11/02/2022	-		114		Commencs	CDF Analytical Cal
M-004	-	-	Ammonia, Total (as N)	07:26:00	2	= 7355		No		culated_01262023.
'''	-	water	6-Month Median	11/15/2022	-	lb/day	181	-		zip
			1	08/09/2022	-		.03			CDF Analytical Cal
M-004	-	-	Anthracene	06:58:00	1	ND "	03	No		culated_01262023.
	-	water	30-Day Average	08/18/2022	-	ug/L	.3	-		zip
				08/09/2022	-		.0052			CDF Analytical Cal
M-004	-	-	Anthracene	06:58:00	1	ND	-	No		culated 01262023.
	-	water	30-Day Average	08/18/2022	-	lb/day	.0525	-		zip –
			Author and Tabel Beautiful	12/30/2022	-	ND	8	NI.		CDF Analytical Cal
M-004	-	- water	Antimony, Total Recoverable	07:00:00	1	ND	-	No		culated_01262023.
	-	water	30-Day Average	01/04/2023	-	ug/L	16	-		zip
			Autimorus Tatal Danassanahla	12/30/2022	-	ND	1.5225	NI-		CDF_Analytical_Cal
M-004	-	-	Antimony, Total Recoverable 30-Day Average	07:00:00	1	ND lb/day	-	No		culated_01262023.
	-	water	30-Day Average	01/04/2023	-	ID/day	3.045	-		zip
			Argenia Total Decemendo	12/30/2022	-	ND	.9515	No		CDF Analytical Cal
M-004	-	- water	Arsenic, Total Recoverable 6-Month Median	07:00:00	2	ND lb/day	-	No		culated_01262023.
	-	water	6-Month Median	01/04/2023	-	ID/day	1.7128	-		zip
			Arsenic, Total Recoverable	12/30/2022	-	ND	5	No		CDF Analytical Cal
M-004	-	- water	6-Month Median	07:00:00	2		-	No		culated_01262023.
	-	water	6-Month Median	01/04/2023	-	ug/L	9	-		zip
			Areania Total Decemendo	12/30/2022	-	ND	5	No		CDF Analytical Cal
M-004	-	- water	Arsenic, Total Recoverable 6-Month Median	07:00:00	1	ND	-	No		culated_01262023.
	-	water	6-Month Median	01/04/2023	-	ug/L	9	-		zip
			Areania Total Decemendo	12/30/2022	-	ND	.9515	No		CDF Analytical Cal
M-004	-	-	Arsenic, Total Recoverable 6-Month Median	07:00:00	1		-	No		culated_01262023.
	-	water	6-Month Median	01/04/2023	-	lb/day	1.7128	-		zip
			Ponzono	08/09/2022	-	ND	.0315	No		CDF_Analytical_Cal
M-004	-	- water	Benzene 30-Day Average	06:58:00	1	lb/day	-	INO		culated_01262023.
	,	Water	30-Day Average	08/12/2022	-	1b/day	.0875	_		zip
			Benzene	08/09/2022	-	ND	.18	No		CDF_Analytical_Cal
M-004	_	- water	30-Day Average	06:58:00	1	ug/L	-	INO		culated_01262023.
	_	Water	30-Day Average	08/12/2022	-	ug/L	.5	_		zip
	_	_	Benzidine	08/09/2022	-	ND	.7002	No		CDF_Analytical_Cal
M-004	_	water	30-Day Average	06:58:00	1	lb/day	-	-		culated_01262023.
		Water	30 Buy Average	08/18/2022	-	15/44	.8573			zip
	_	_	Benzidine	08/09/2022	-	ND	4	No		CDF_Analytical_Cal
M-004	_	water	30-Day Average	06:58:00	1	ug/L	-	-		culated_01262023.
		Wate.	30 Buy Average	08/18/2022	-	49,2	5			zip
	_	_	Benzo(a)anthracene	08/09/2022	-	ND	.0087	No		CDF_Analytical_Cal
M-004	_	water	30-Day Average	06:58:00	1	lb/day		-		culated_01262023.
			a,	08/18/2022	-	,,	.0525			zip
,, ,,, ,	_	_	Benzo(a)anthracene	08/09/2022	-	ND	.05	No		CDF_Analytical_Cal
M-004	-	water	30-Day Average	06:58:00	1	ug/L		-		culated_01262023.
				08/18/2022	-	""	.3			zip
	-	-	Benzo(a)pyrene	08/09/2022	-	ND	.04	No		CDF_Analytical_Cal
M-004	-	water	30-Day Average	06:58:00	1	ug/L		_		culated_01262023.
			-	08/18/2022	-	 	.3			zip
1 1004	-	_	Benzo(a)pyrene	08/09/2022	- 1	ND	.007	No		CDF_Analytical_Cal
M-004	-	water	30-Day Average	06:58:00	1	lb/day	.0525	-		culated_01262023.
			-	08/18/2022	-	-		-		zip
N 004	-	-	Benzo(b)fluoranthene	08/09/2022	- 1	ND	.05	No		CDF_Analytical_Cal
M-004	-	water	30-Day Average	06:58:00	1	ug/L	.3	-		culated_01262023.
			<u> </u>	08/18/2022	-	+ -				zip
M 004	-	-	Benzo(b)fluoranthene	08/09/2022	- 1	ND	.0087	No		CDF_Analytical_Cal
M-004	-	water	30-Day Average	06:58:00	1	lb/day	.0525	-		culated_01262023. zip
			1	08/18/2022	-	1	رعدن. ا			ا ۲۱۲

Location	Collection Method, Depth (m)	Sample Type, Matrix	Parameter, Calculation Type	Sample Date, Sample Time, Analysis Date	Field Rep, Lab Rep, Lab Batch	Result, Units	MDL, ML, RL	Review Priority, QA Codes	Comments	Data Source
Location	Depth (III)	Macrix		08/09/2022	- Lab Batch		.0087		Comments	CDF Analytical Cal
M-004	-	-	Benzo(ghi)perylene	06:58:00	1	ND	-	No		culated_01262023.
	-	water	30-Day Average	08/18/2022	-	lb/day	.0175	-		zip
			5 (1)	08/09/2022	_	1	.05			CDF Analytical Cal
M-004	-	-	Benzo(ghi)perylene	06:58:00	1	ND	-	No		culated_01262023.
	-	water	30-Day Average	08/18/2022	-	ug/L	.1	-		zip –
			Benzo(k)fluoranthene	08/09/2022	-	ND	.0035	No		CDF Analytical Cal
M-004	-	- water	1	06:58:00	1	ND Ib/day	-	No		culated_01262023.
	-	water	30-Day Average	08/18/2022	-	lb/day	.0525	-		zip
			Benzo(k)fluoranthene	08/09/2022	-	ND	.02	No		CDF_Analytical_Cal
M-004	-	- water	30-Day Average	06:58:00	1		-	INO		culated_01262023.
	-	Water	30-Day Average	08/18/2022	-	ug/L	.3	-		zip
			Beryllium, Total Recoverable	08/09/2022	-	ND	.021	No		CDF_Analytical_Cal
M-004	-	- water	30-Day Average	06:58:00	1	Ib/day	-	INO		culated_01262023.
	-	Water	30-Day Average	08/12/2022	-	Ib/uay	.035	-		zip
			Demilliana Total Deserverable	08/09/2022	-	ND	.12	No		CDF Analytical Cal
M-004	-	-	Beryllium, Total Recoverable	06:58:00	1	ND	-	No		culated_01262023.
	-	water	30-Day Average	08/12/2022	-	ug/L	.2	-		zip
			DUC Come	08/09/2022	-	ND	.013	NI -		CDF Analytical Cal
M-004	-	-	BHC, Sum	06:58:00	1	ND	-	No		culated_01262023.
	-	water	6-Month Median	08/18/2022	-	ug/L	.03	-		zip –
			BUG 6	08/09/2022	-		.0022			CDF Analytical Cal
M-004	-	<u> </u>	BHC, Sum	06:58:00	1	ND I	-	No		culated_01262023.
	-	water	6-Month Median	08/18/2022	-	lb/day	.0052	-		zip
			/ · · · · · · · · · · · · · · · ·	08/09/2022	-		.0875			CDF Analytical Cal
M-004	-	-	Bis (2-Chloroethoxy) Methane	06:58:00	1	ND	-	No		culated_01262023.
'''	-	water	30-Day Average	08/18/2022	-	lb/day	.8752	-		zip
				08/09/2022	-		.5			CDF Analytical Cal
M-004	-	-	Bis (2-Chloroethoxy) Methane	06:58:00	1	ND	-	No		culated_01262023.
1.00.	-	water	30-Day Average	08/18/2022	-	ug/L	5	-		zip
				08/09/2022	-		.9			CDF Analytical Cal
M-004	-	-	Bis (2-Chloroethyl) Ether	06:58:00	1	ND	-	No		culated_01262023.
1.00.	-	water	30-Day Average	08/18/2022	-	ug/L	1	-		zip
				08/09/2022	-		.1576			CDF Analytical Cal
M-004	-	-	Bis (2-Chloroethyl) Ether	06:58:00	1	ND	.1370	No		culated 01262023.
1.00.	-	water	30-Day Average	08/18/2022	-	lb/day	.1751	-		zip
				08/09/2022	_		.15755			CDF_Analytical_Cal
M-004	-	-	Bis (2-Chloroisopropyl) Ether	06:58:00	1	ND	.13733	No		culated_01262023.
14 004	-	water	30-Day Average	08/18/2022	-	lb/day	.3501	-		zip
				08/09/2022			.9			CDF_Analytical_Cal
M-004	-	-	Bis (2-Chloroisopropyl) Ether	06:58:00	1	ND	-	No		culated_01262023.
14 004	-	water	30-Day Average	08/18/2022	-	ug/L	2	-		zip
				08/09/2022			.5			CDF_Analytical_Cal
M-004	-	-	Bis (2-Ethylhexyl) Phthalate	06:58:00	1	DNQ 2.7	.5	No		culated 01262023.
141-00-	-	water	30-Day Average	08/18/2022	-	ug/L	3	-		zip
				08/09/2022	-		.0875			CDF Analytical Cal
M-004	-	-	Bis (2-Ethylhexyl) Phthalate		1	DNQ 0.473	.0075	No		culated_01262023.
" 007	-	water	30-Day Average	06:58:00 08/18/2022	-	lb/day	.5252	-		zip
					-	+ -	.0263			CDF Analytical Cal
M-004	-	-	Bromoform	08/09/2022 06:58:00	- 1	ND	.0203	No		culated_01262023.
141-004	-	water	30-Day Average	06:58:00	-	lb/day	.0875	-		zip
						+ -	.15			CDF Analytical Cal
M-004	-	-	Bromoform	08/09/2022	- 1	ND	.10	No		culated_01262023.
141-004	-	water	30-Day Average	06:58:00	-	ug/L	- .5	-		zip
			+	08/12/2022		+	.0525	-		CDF_Analytical_Cal
M-004	-	-	Bromomethane	08/09/2022	- 1	ND	.0525	No		culated_01262023.
141-004	-	water	30-Day Average	06:58:00	1 -	lb/day	.0875	-		zip
		I		08/12/2022	-		.0073			²¹

Location	Collection Method, Depth (m)	Sample Type, Matrix	Parameter, Calculation Type	Sample Date, Sample Time, Analysis Date	Field Rep, Lab Rep, Lab Batch	Result, Units	MDL, ML, RL	Review Priority, QA Codes	Comments	Data Source
Location	Depth (m)	FIGURE		08/09/2022	-		.3		Comments	CDF Analytical Cal
M-004	-	-	Bromomethane	06:58:00	1	ND	.5	No		culated_01262023.
"" 00 "	-	water	30-Day Average	08/12/2022	-	ug/L	.5	-		zip
				12/30/2022	_	†	4			CDF Analytical Cal
M-004	-	-	Cadmium, Total Recoverable	07:00:00	1	ND]	No		culated_01262023.
141-00-4	-	water	6-Month Median	01/04/2023	-	ug/L	8	-		zip
					-		.7612			CDF Analytical Cal
M-004	-	-	Cadmium, Total Recoverable	12/30/2022 07:00:00	2	ND	./012	No		culated 01262023.
141-004	-	water	6-Month Median		-	lb/day	1.5225	-		zip
				01/04/2023		+				
M 004	-	-	Cadmium, Total Recoverable	12/30/2022	-	ND	4	No		CDF_Analytical_Cal
M-004	-	water	6-Month Median	07:00:00	2	ug/L	-	-		culated_01262023.
				01/04/2023	-	ļ ,	8			zip
	_	_	Cadmium, Total Recoverable	12/30/2022	-	ND	.7612	No		CDF_Analytical_Cal
M-004	_	water	6-Month Median	07:00:00	1	lb/day		-		culated_01262023.
			0.1.011.1.1.00.01.1	01/04/2023	-	,,	1.5225			zip
	_	_	Carbon Tetrachloride	08/09/2022	-	ND	.028	No		CDF_Analytical_Cal
M-004	_	water	30-Day Average	06:58:00	1	lb/day	-	-		culated_01262023.
	-	water	30-Day Average	08/12/2022	-	1D/day	.0875	_		zip
			Carban Tatraablarida	08/09/2022	-	ND	.16	No		CDF Analytical Cal
M-004	-	-	Carbon Tetrachloride	06:58:00	1	ND	-	No		culated_01262023.
	-	water	30-Day Average	08/12/2022	-	ug/L	.5	-		zip –
				08/09/2022	-		.0018			CDF Analytical Cal
M-004	-	-	Chlordane	06:58:00	1	ND	-	No		culated_01262023.
14 00 1	-	water	30-Day Average	08/18/2022	-	lb/day	.0053	-		zip
							.003			CDF Analytical Cal
M-004	-	-	Chlordane	08/09/2022	- 1	ND	.003	No		culated_01262023.
141-004	-	water	30-Day Average	06:58:00	1	ug/L	.01	-		zip
				08/18/2022		 				
N4 004	-	_	Chlorobenzene	08/09/2022	-	ND	.18	No		CDF_Analytical_Cal
M-004	-	water	30-Day Average	06:58:00	1	ug/L	-	-		culated_01262023.
			, ,	08/12/2022	-	J	.5			zip
	_	_	Chlorobenzene	08/09/2022	-	ND	.0315	No		CDF_Analytical_Cal
M-004	_	water	30-Day Average	06:58:00	1	lb/day		-		culated_01262023.
		Wate.	30 Buy Average	08/12/2022	-	15/44/	.0875			zip
	_	_	Chloroform	08/09/2022	-	DNQ 0.061	.0105	No		CDF_Analytical_Cal
M-004	_	water	30-Day Average	06:58:00	1	lb/day	-	-		culated_01262023.
	_	Water	Ju-Day Average	08/12/2022	-	1D/day	.0875	_		zip
			Chlaraform	08/09/2022	-	DNO 0 35	.06	No		CDF_Analytical_Cal
M-004	-	-	Chloroform	06:58:00	1	DNQ 0.35	-	No		culated_01262023.
	-	water	30-Day Average	08/12/2022	-	ug/L	.5	-		zip –
				08/09/2022	-		.0228			CDF Analytical Cal
M-004	-	-	Chloromethane	06:58:00	1	ND	-	No		culated_01262023.
	-	water	30-Day Average	08/12/2022	-	lb/day	.0875	-		zip
				08/09/2022		1	.13			CDF_Analytical_Cal
M-004	-	-	Chloromethane	06:58:00	1	ND	.13	No		culated_01262023.
141-004	-	water	30-Day Average		_	ug/L	.5	-		zip
				08/12/2022		+				
M 004	-	-	Chromium, Total Recoverable	12/30/2022	-	ND	.7612	No		CDF_Analytical_Cal
M-004	-	water	6-Month Median	07:00:00	2	lb/day	1 -	-		culated_01262023.
				01/04/2023	-	+	1.5225	<u> </u>		zip
,, ,, ,	_	_	Chromium, Total Recoverable	12/30/2022	-	ND	4	No		CDF_Analytical_Cal
M-004	_	water	6-Month Median	07:00:00	1	ug/L		-		culated_01262023.
				01/04/2023	-		8			zip
	_	_	Chromium, Total Recoverable	12/30/2022	-	ND	4	No		CDF_Analytical_Cal
M-004		- water	6-Month Median	07:00:00	2	ug/L	-	100		culated_01262023.
		vvalei	U-MOHET MECHAN	01/04/2023	<u>-</u>	L ug/L	8			zip
			Chromium Total Description	12/30/2022	-	ND	.7612	NI -		CDF_Analytical_Cal
M-004	-	-	Chromium, Total Recoverable	07:00:00	1	ND	-	No		culated_01262023.
	-	water	6-Month Median	01/04/2023	-	lb/day	1.5225	-		zip
			•	01/07/2023						

Location	Collection Method, Depth (m)	Sample Type, Matrix	Parameter, Calculation Type	Sample Date, Sample Time, Analysis Date	Field Rep, Lab Rep, Lab Batch	Result, Units	MDL, ML, RL	Review Priority, QA Codes	Comments	Data Source
Location	Depth (III)	Pidelix		08/09/2022	-		.0087		Comments	CDF Analytical Cal
M-004	-		Chrysene	06:58:00	1	ND	-	No		culated_01262023.
	-	water	30-Day Average	08/18/2022	-	lb/day	.0525	-		zip
				08/09/2022	-		.05			CDF Analytical Cal
M-004	-	-	Chrysene	06:58:00	1	ND	-	No		culated_01262023.
	-	water	30-Day Average	08/18/2022	-	ug/L	.3	-		zip –
			sis 1.2 Dishlaransasas	08/09/2022	-	ND	.09	NI-		CDF Analytical Cal
M-004	-	- water	cis-1,3-Dichloropropene	06:58:00	1	ND	-	No		culated_01262023.
	-	water	30-Day Average	08/12/2022	-	ug/L	.5	-		zip –
			sis 1.2 Dishlaranranan	08/09/2022	-	ND	.0157	No		CDF Analytical Cal
M-004	-	- water	cis-1,3-Dichloropropene	06:58:00	1	ND lb/day	-	No		culated_01262023.
	-	water	30-Day Average	08/12/2022	-	ID/day	.0875	-		zip
			Conner Total Decements	12/30/2022	-	DNO 0 053	.901	No		CDF Analytical Cal
M-004	-	-	Copper, Total Recoverable 6-Month Median	07:00:00	2	DNQ 0.952	-	No		culated_01262023.
	-	water	6-Month Median	01/04/2023	-	lb/day	1.801	-		zip –
			Common Total Bosovianskia	12/30/2022	-	DNO 0 053	.901	NI-		CDF Analytical Cal
M-004	-	-	Copper, Total Recoverable	07:00:00	1	DNQ 0.952	-	No		culated_01262023.
	-	water	6-Month Median	01/04/2023	-	lb/day	1.801	-		zip –
				12/30/2022	-	5110 5	5			CDF Analytical Cal
M-004	-		Copper, Total Recoverable	07:00:00	1	DNQ 5	-	No		culated_01262023.
	-	water	6-Month Median	01/04/2023	-	ug/L	10	-		zip
				12/30/2022	-		5			CDF Analytical Cal
M-004	-	-	Copper, Total Recoverable	07:00:00	2	DNQ 5	-	No		culated_01262023.
11001	-	water	6-Month Median	01/04/2023	-	ug/L	10	-		zip
				08/09/2022	_		2.5			CDF Analytical Cal
M-004	-	-	Cyanide, Total (as CN)	06:58:00	2	ND	2.5	No		culated_01262023.
14 00 1	-	water	6-Month Median	08/19/2022	-	ug/L	5	-		zip
				08/09/2022	_		.4376			CDF Analytical Cal
M-004	-	-	Cyanide, Total (as CN)	06:58:00	1	ND	.4370	No		culated_01262023.
14 004	-	water	6-Month Median	08/19/2022	-	lb/day	.875	-		zip
				08/09/2022	-	+	.4376			CDF Analytical Cal
M-004	-	-	Cyanide, Total (as CN)	06:58:00	2	ND	.4370	No		culated_01262023.
14 004	-	water	6-Month Median	08/19/2022	-	lb/day	.8752	-		zip
				08/09/2022		+	2.5			CDF Analytical Cal
M-004	-	-	Cyanide, Total (as CN)	06:58:00	1	ND	2.5	No		culated_01262023.
14 004	-	water	6-Month Median	08/19/2022	-	ug/L	5	-		zip
			DDT/DDD/DDE, Sum of P,P & O,P	08/09/2022			.0021			CDF_Analytical_Cal
M-004	-	-	Isomers	06:58:00	1	ND	.0021	No		culated_01262023.
141-00-4	-	water	30-Day Average	08/18/2022	-	lb/day	.0079	-		zip
			DDT/DDD/DDE, Sum of P,P & O,P	08/09/2022			.012			CDF Analytical Cal
M-004	-	-	Isomers		- 1	ND	.012	No		culated_01262023.
141-004	-	water	30-Day Average	06:58:00	-	ug/L	.045	-		zip
				08/18/2022		+				CDF_Analytical_Cal
M-004	-	-	Di-n-butyl Phthalate	08/09/2022	- 1	ND	.4	No		culated_01262023.
141-004	-	water	30-Day Average	06:58:00	-	ug/L	5	-		zip
				08/18/2022	-		.07			CDF Analytical Cal
M-004	-	-	Di-n-butyl Phthalate	08/09/2022	- 1	ND	.07	No		culated_01262023.
141-004	-	water	30-Day Average	06:58:00	-	lb/day	.8752	-		zip
				08/18/2022		+	.05			CDF Analytical Cal
M-004	-	-	Dibenzo(a,h)anthracene	08/09/2022	- 1	ND	.05	No		culated_01262023.
141-004	-	water	30-Day Average	06:58:00	-	ug/L	.1	-		zip
			+	08/18/2022		+	.0087	†		CDF Analytical Cal
M-004	-	-	Dibenzo(a,h)anthracene	08/09/2022	- 1	ND	.0087	No		culated_01262023.
141-004	-	water	30-Day Average	06:58:00	<u> </u>	lb/day	- .0175	-		zip
<u> </u>			+	08/18/2022		 				
14004	-	-	Dibromochloromethane	08/09/2022	- 1	ND	.0298	No		CDF_Analytical_Cal
M-004	-	water	30-Day Average	06:58:00	1	lb/day	- .0875	-		culated_01262023.
			1	08/12/2022	-	1	.00/3			zip

Location	Collection Method, Depth (m)	Sample Type, Matrix	Parameter, Calculation Type	Sample Date, Sample Time, Analysis Date	Field Rep, Lab Rep, Lab Batch	Result, Units	MDL, ML, RL	Review Priority, QA Codes	Comments	Data Source
200411011	Deptii (iii)	TIGGIA		08/09/2022	-		.17		Comments	CDF Analytical Cal
M-004	-	-	Dibromochloromethane	06:58:00	1	ND	-	No		culated_01262023.
	-	water	30-Day Average	08/12/2022	-	ug/L	.5	-		zip
			Dishlambana Com	08/09/2022	-	ND	.45	NI.		CDF Analytical Cal
M-004	-	-	Dichlorobenzenes, Sum	06:58:00	1	ND	-	No		culated_01262023.
	-	water	30-Day Average	08/12/2022	-	ug/L	1	-		zip –
			Dichlorobenzenes, Sum	08/09/2022	-	ND	.0787	Na		CDF Analytical Cal
M-004	-	- water	30-Day Average	06:58:00	1	lb/day	-	No		culated_01262023.
	-	watei	30-Day Average	08/12/2022	-	ID/day	.175	-		zip
			Dichlorobromomethane	08/09/2022	-	ND	.014	No		CDF_Analytical_Cal
M-004	_	- water	30-Day Average	06:58:00	1	lb/day	-	INO		culated_01262023.
	-	Water	30-Day Average	08/12/2022	-	1b/day	.0875	_		zip
			Dichlorobromomethane	08/09/2022	-	ND	.08	No		CDF_Analytical_Cal
M-004	-	- water	30-Day Average	06:58:00	1	ug/L	-	110		culated_01262023.
	_	Water	30-bay Average	08/12/2022	-	ug/L	.5			zip
			Dieldrin	08/09/2022	-	ND	.002	No		CDF_Analytical_Cal
M-004	-	- water	30-Day Average	06:58:00	1	ug/L	-	110		culated_01262023.
	_	Water	30-Day Average	08/12/2022	-	ug/L	.01	_		zip
			Dieldrin	08/09/2022	-	ND	.0004	No		CDF_Analytical_Cal
M-004	-	- water	30-Day Average	06:58:00	1	lb/day	-	INO		culated_01262023.
	-	Water	30-Day Average	08/18/2022	-	1b/day	.0018	_		zip
			Diethyl Phthalate	08/09/2022	-	ND	.0875	No		CDF_Analytical_Cal
M-004	-	- water	30-Day Average	06:58:00	1	לא lb/day	-	INO		culated_01262023.
	-	watei	30-Day Average	08/18/2022	-	ID/day	.3501	-		zip
			Diathyd Dhthalata	08/09/2022	-	ND	.5	No		CDF Analytical Cal
M-004	-	-	Diethyl Phthalate	06:58:00	1	ND	-	No		culated_01262023.
	-	water	30-Day Average	08/18/2022	-	ug/L	2	-		zip
			Dimethyl Phthalate	08/09/2022	-	ND	.5	No		CDF_Analytical_Cal
M-004	-	- water	30-Day Average	06:58:00	1		-	INO		culated_01262023.
	-	watei	30-Day Average	08/18/2022	-	ug/L	2	-		zip
			Dimethyl Phthalate	08/09/2022	-	ND	.0875	No		CDF_Analytical_Cal
M-004	-	- water	30-Day Average	06:58:00	1	lb/day	-	INO		culated_01262023.
	-	Water	30-Day Average	08/18/2022	-	1b/day	.3501	_		zip
			Endosulfans, Sum	08/09/2022	-	ND	.0019	No		CDF_Analytical_Cal
M-004	-	- water	6-Month Median	06:58:00	1	lb/day	-	110		culated_01262023.
	_	Water	0-Month Median	08/18/2022	-	1b/day	.0052			zip
			Endosulfans, Sum	08/09/2022	-	ND	.011	No		CDF_Analytical_Cal
M-004	-	water	6-Month Median	06:58:00	1	ug/L	-	110		culated_01262023.
	_	Water	0-Month Median	08/18/2022	-	ug/L	.03	_		zip
	_	_	Endrin	08/09/2022	-	ND	.003	No		CDF_Analytical_Cal
M-004	_	water	6-Month Median	06:58:00	1	ug/L	-	-		culated_01262023.
		Water	o Month Median	08/18/2022	-	ug/L	.01			zip
	_	_	Endrin	08/09/2022	-	ND	.0005	No		CDF_Analytical_Cal
M-004	-	water	6-Month Median	06:58:00	1	lb/day	-	-		culated_01262023.
		Water	o Month Median	08/18/2022	-	15/day	.00175			zip
	_	_	Ethylbenzene	08/09/2022	-	ND	.0175	No		CDF_Analytical_Cal
M-004	_	water	30-Day Average	06:58:00	1	lb/day	-	-		culated_01262023.
		***************************************	23 24, Attainage	08/12/2022	-	1.2,449	.0875			zip
	_	_	Ethylbenzene	08/09/2022	-	ND	.1	No		CDF_Analytical_Cal
M-004	-	water	30-Day Average	06:58:00	1	ug/L	-	'•		culated_01262023.
		***************************************	23 24, Attainage	08/12/2022	-	"g,"	.5			zip
	_	_	Fluoranthene	08/09/2022	-	ND	.0035	No		CDF_Analytical_Cal
M-004	_	water	30-Day Average	06:58:00	1	lb/day	-	'•		culated_01262023.
		***************************************	23 24, Attainage	08/18/2022	-	1.2,449	.00875			zip
	_	_	Fluoranthene	08/09/2022	-	ND	.02	No		CDF_Analytical_Cal
M-004	-	water	30-Day Average	06:58:00	1	ug/L	-	'•		culated_01262023.
		Water .	July / Wordinge	08/18/2022	-	"g, L	.05			zip

Location	Collection Method, Depth (m)	Sample Type, Matrix	Parameter, Calculation Type	Sample Date, Sample Time, Analysis Date	Field Rep, Lab Rep, Lab Batch	Result, Units	MDL, ML, RL	Review Priority, QA Codes	Comments	Data Source
Location	Deptii (iii)	HIGHIX		08/09/2022	-		.0035	`	Comments	CDF Analytical Cal
M-004	-		Fluorene	06:58:00	1	ND	-	No		culated_01262023.
	-	water	30-Day Average	08/18/2022	-	lb/day	.0175	-		zip
			Electronic	08/09/2022	-	ND	.02	N1 -		CDF Analytical Cal
M-004	-	-	Fluorene	06:58:00	1	ND	-	No		culated_01262023.
	-	water	30-Day Average	08/18/2022	-	ug/L	.1	-		zip
			Halomethanes, Sum	08/09/2022	-	ND	.58	No		CDF_Analytical_Cal
M-004	-	- water	30-Day Average	06:58:00	1	ug/L	-	110		culated_01262023.
	_	water	30-Day Average	08/12/2022	-	ug/L	1.5			zip
	_	_	Halomethanes, Sum	08/09/2022	-	ND	.1015	No		CDF_Analytical_Cal
M-004	_	water	30-Day Average	06:58:00	1	lb/day	-	-		culated_01262023.
		Water	30 Buy Average	08/12/2022	-	15/44	.2625			zip
	_	_	Heptachlor	08/09/2022	-	ND	.0007	No		CDF_Analytical_Cal
M-004	-	water	30-Day Average	06:58:00	1	lb/day	-	-		culated_01262023.
			Jo Ju, Meluge	08/18/2022	-	,,	.0175			zip
	-	_	Heptachlor	08/09/2022	-	ND	.004	No		CDF_Analytical_Cal
M-004	-	water	30-Day Average	06:58:00	1	ug/L	-	-		culated_01262023.
				08/18/2022	-	""	.01			zip
	-	-	Heptachlor Epoxide	08/09/2022	-	ND	.001	No		CDF_Analytical_Cal
M-004	-	water	30-Day Average	06:58:00	1	ug/L	- 01	-		culated_01262023.
			<u> </u>	08/18/2022	-	ļ , ,	.01			zip
1 14 004	-	-	Heptachlor Epoxide	08/09/2022	-	ND	.0002	No		CDF_Analytical_Cal
M-004	-	water	30-Day Average	06:58:00	1	lb/day	.0018	-		culated_01262023.
			<u> </u>	08/18/2022	-	1				zip
M-004	-	-	Hexachlorobenzene	08/09/2022	- 1	ND	.1751	No		CDF_Analytical_Cal
M-004	-	water	30-Day Average	06:58:00	_ -	lb/day	.1751	-		culated_01262023. zip
				08/18/2022		1	1 1			
M-004	-	-	Hexachlorobenzene	08/09/2022	- 1	ND	1 1	No		CDF_Analytical_Cal
IVI-004	-	water	30-Day Average	06:58:00	1	ug/L	1 1	-		culated_01262023. zip
				08/18/2022		+	.07			CDF Analytical Cal
M-004	-	-	Hexachlorobutadiene	08/09/2022	- 1	ND	.07	No		culated_01262023.
141-004	-	water	30-Day Average	06:58:00 08/18/2022	-	lb/day	.1751	-		zip
				08/18/2022			.4			CDF Analytical Cal
M-004	-	-	Hexachlorobutadiene	06:58:00	1	ND	.7	No		culated_01262023.
	-	water	30-Day Average	08/18/2022	-	ug/L	1 1	-		zip
				08/09/2022	_	1	.1575			CDF_Analytical_Cal
M-004	-	-	Hexachlorocyclopentadiene	06:58:00	1	ND	.13,3	No		culated_01262023.
	-	water	30-Day Average	08/18/2022	-	lb/day	.175	-		zip
			1	08/09/2022	-		.9			CDF Analytical Cal
M-004	-		Hexachlorocyclopentadiene	06:58:00	1	ND "	-	No		culated_01262023.
	-	water	30-Day Average	08/18/2022	-	ug/L	1	-		zip
				08/09/2022	-	NB	.4			CDF_Analytical_Cal
M-004	-	-	Hexachloroethane	06:58:00	1	ND	-	No		culated_01262023.
	-	water	30-Day Average	08/18/2022	-	ug/L	1	-		zip –
			Llava chlara othan o	08/09/2022	-	ND	.07	No		CDF Analytical Cal
M-004	-	- water	Hexachloroethane	06:58:00	1	ND lb/day	-	No		culated_01262023.
	-	water	30-Day Average	08/18/2022	-	ID/day	.1751	-		zip
			Indeno (1,2,3-cd) Pyrene	08/09/2022	-	ND	.0088	No		CDF_Analytical_Cal
M-004	-	- water	30-Day Average	06:58:00	1	לא lb/day	-	INO		culated_01262023.
	<u> </u>	watei	Ju-Day Average	08/18/2022	-	ib/uay	.0875			zip
			Indeno (1,2,3-cd) Pyrene	08/09/2022	-	ND	.05	No		CDF_Analytical_Cal
M-004	-	- water	30-Day Average	06:58:00	1	ug/L	-	-		culated_01262023.
		water	Jo-Day Average	08/18/2022	-	ug/L	.05			zip
		_	Isophorone	08/09/2022	-	ND	.0875	No		CDF_Analytical_Cal
M-004	-	- water	30-Day Average	06:58:00	1	lb/day	-	-		culated_01262023.
		Water	Jobay Average	08/18/2022	-	1.5,444	.17505			zip

Location	Collection Method, Depth (m)	Sample Type, Matrix	Parameter, Calculation Type	Sample Date, Sample Time, Analysis Date	Field Rep, Lab Rep, Lab Batch	Result, Units	MDL, ML, RL	Review Priority, QA Codes	Comments	Data Source
Location	Deptii (iii)	Macrix		08/09/2022	- Lab Battii		.5		Comments	CDF Analytical Cal
M-004	-	-	Isophorone	06:58:00	1	ND 	.5	No		culated_01262023.
	-	water	30-Day Average	08/18/2022	-	ug/L	1	-		zip
				08/09/2022	-	N.S	.0105			CDF Analytical Cal
M-004	-	-	Lead, Total Recoverable	06:58:00	2	ND	-	No		culated_01262023.
	-	water	6-Month Median	08/12/2022	-	lb/day	.035	-		zip –
			Lead, Total Recoverable	08/09/2022	-	ND	.063	No		CDF_Analytical_Cal
M-004	_	- water	6-Month Median	06:58:00	2	ug/L	-	110		culated_01262023.
	_	Water	0-Month Median	08/12/2022	-	ug/L	.2			zip
	_	_	Lead, Total Recoverable	08/09/2022	-	ND	.0105	No		CDF_Analytical_Cal
M-004	_	water	6-Month Median	06:58:00	1	lb/day		-		culated_01262023.
		Water	o month median	08/12/2022	-	157447	.03501			zip
	_	_	Lead, Total Recoverable	08/09/2022	-	ND	.063	No		CDF_Analytical_Cal
M-004	_	water	6-Month Median	06:58:00	1	ug/L	_	-		culated_01262023.
				08/12/2022	-	1 3,	.2			zip
	-	-	Mercury, Total Recoverable	08/09/2022	-	ND	.12	No		CDF_Analytical_Cal
M-004	-	water	6-Month Median	06:58:00	2	ug/L	-	-		culated_01262023.
				08/12/2022	-	1 -	.2			zip
M 004	-	-	Mercury, Total Recoverable	08/09/2022	-	ND	.12	No		CDF_Analytical_Cal
M-004	-	water	6-Month Median	06:58:00	1	ug/L	.2	-		culated_01262023.
				08/12/2022	-	+				
M-004	-	-	Mercury, Total Recoverable	08/09/2022	- 1	ND	.021	No		CDF_Analytical_Cal culated_01262023.
IVI-004	-	water	6-Month Median	06:58:00	-	lb/day	.035	-		zip
				08/12/2022		+	.033			CDF Analytical Cal
M-004	-	-	Mercury, Total Recoverable	08/09/2022	2	ND	.021	No		culated_01262023.
141-004	-	water	6-Month Median	06:58:00 08/12/2022	-	lb/day	.035	-		zip
				08/09/2022			.021			CDF Analytical Cal
M-004	-	-	Methylene Chloride	06:58:00	1	ND	1 .021	No		culated_01262023.
14 00 1	-	water	30-Day Average	08/12/2022	-	lb/day	.0875	-		zip
				08/09/2022	_		.12			CDF Analytical Cal
M-004	-		Methylene Chloride	06:58:00	1	ND,		No		culated_01262023.
	-	water	30-Day Average	08/12/2022	-	ug/L	.5	-		zip
			ALADA III D. III I	08/09/2022	-	N.S	.5			CDF Analytical Cal
M-004	-	-	N-Nitrosodi-n-Propylamine	06:58:00	1	ND	-	No		culated_01262023.
	-	water	30-Day Average	08/18/2022	-	ug/L	5	-		zip
			N-Nitrosodi-n-Propylamine	08/09/2022	-	ND	.0875	No		CDF_Analytical_Cal
M-004	-	- water	30-Day Average	06:58:00	1	Ib/day	-	No		culated_01262023.
	,	Water	30-Day Average	08/18/2022	-	1b/uay	.8752	_		zip
	_	_	N-Nitrosodimethylamine	08/09/2022	-	ND	.1225	No		CDF_Analytical_Cal
M-004	_	water	30-Day Average	06:58:00	1	lb/day	-	-		culated_01262023.
		Water	30 Buy Average	08/18/2022	-	15/44	.8752			zip
	_	_	N-Nitrosodimethylamine	08/09/2022	-	ND	.7	No		CDF_Analytical_Cal
M-004	_	water	30-Day Average	06:58:00	1	ug/L		-		culated_01262023.
			Jo July Monage	08/18/2022	-	~9,-	5			zip
	_	_	N-Nitrosodiphenylamine	08/09/2022	-	ND	.7	No		CDF_Analytical_Cal
M-004	-	water	30-Day Average	06:58:00	1	ug/L		-		culated_01262023.
			1 2	08/18/2022	-	 	1225			zip
14004	-	-	N-Nitrosodiphenylamine	08/09/2022	- 1	ND	.1225	No		CDF_Analytical_Cal
M-004	-	water	30-Day Average	06:58:00	1	lb/day	.175	-		culated_01262023. zip
<u> </u>			+	08/18/2022	-	+				CDF Analytical Cal
M-004	-	-	Nickel, Total Recoverable	12/30/2022	- 1	DNQ 4	4	No		culated_01262023.
141-004	-	water	6-Month Median	07:00:00	_ _	ug/L	8	-		zip
				01/04/2023		+	.7612			CDF_Analytical_Cal
M-004	-	-	Nickel, Total Recoverable	12/30/2022 07:00:00	2	DNQ 0.76	./012	No		culated_01262023.
141-004	-	water	6-Month Median	07:00:00	-	lb/day	1.522	-		zip
		l		1 01/04/2023			1 1.522	I .		-'P

Location	Collection Method, Depth (m)	Sample Type, Matrix	Parameter, Calculation Type	Sample Date, Sample Time, Analysis Date	Field Rep, Lab Rep, Lab Batch	Result, Units	MDL, ML, RL	Review Priority, QA Codes	Comments	Data Source
	-1 ,			12/30/2022	-		.7612	`		CDF Analytical Cal
M-004	-	- water	Nickel, Total Recoverable 6-Month Median	07:00:00	1	DNQ 0.76 lb/day	-	No		culated_01262023.
	•	water	0-Month Median	01/04/2023	-	ID/day	1.5225	_		zip
			Nickel, Total Recoverable	12/30/2022	-	DNQ 4	4	No		CDF_Analytical_Cal
M-004	-	- water	6-Month Median	07:00:00	2	ug/L	-	INO		culated_01262023.
	_	water	0-Month Median	01/04/2023	-	ug/L	8	_		zip
	_	_	Nitrobenzene	08/09/2022	-	ND	.0875	No		CDF_Analytical_Cal
M-004	_	water	30-Day Average	06:58:00	1	lb/day	-	-		culated_01262023.
	_	Water	30-bay Average	08/18/2022	-	1b/day	.17505	_		zip
	_	_	Nitrobenzene	08/09/2022	-	ND	.5	No		CDF_Analytical_Cal
M-004	_	water	30-Day Average	06:58:00	1	ug/L	-	-		culated_01262023.
	_	Water	30-bay Average	08/18/2022	-	ug/L	1	_		zip
			PCB-1016	08/09/2022	-	ND	.03	No		CDF_Analytical_Cal
M-004	_	water	30-Day Average	06:58:00	1	ug/L	-	INO		culated_01262023.
	_	Water	30-Day Average	08/18/2022	-	ug/L	.1	_		zip
			PCB-1016	08/09/2022	-	ND	.0053	No		CDF_Analytical_Cal
M-004	-	- water	30-Day Average	06:58:00	1	lb/day	-	INO		culated_01262023.
	-	Water	30-Day Average	08/18/2022	-	I ID/Uay	.0175	_		zip
			PCB-1221	08/09/2022	-	ND	.03	No		CDF Analytical Cal
M-004	-	-		06:58:00	1	ND	-	No		culated_01262023.
	-	water	30-Day Average	08/18/2022	-	ug/L	.1	_		zip
			DCD 1221	08/09/2022	-	ND	.0053	NI-		CDF Analytical Cal
M-004	-	-	PCB-1221	06:58:00	1	ND	-	No		culated_01262023.
	-	water	30-Day Average	08/18/2022	-	lb/day	.0175	-		zip –
			202 1000	08/09/2022	-		.0053			CDF Analytical Cal
M-004	-		PCB-1232	06:58:00	1	ND	-	No		culated_01262023.
	-	water	30-Day Average	08/18/2022	-	lb/day	.0175	-		zip
				08/09/2022	-	i	.03			CDF Analytical Cal
M-004	-		PCB-1232	06:58:00	1	ND	-	No		culated_01262023.
	-	water	30-Day Average	08/18/2022	-	ug/L	.1	-		zip
				08/09/2022	-		.03			CDF Analytical Cal
M-004	-	-	PCB-1242	06:58:00	1	ND	-	No		culated_01262023.
	-	water	30-Day Average	08/18/2022	-	ug/L	.1	-		zip
				08/09/2022	-	1	.0053			CDF Analytical Cal
M-004	-	-	PCB-1242	06:58:00	1	ND	0055	No		culated_01262023.
14 00 1	-	water	30-Day Average	08/18/2022	-	lb/day	.0175	-		zip
				08/09/2022			.0053			CDF Analytical Cal
M-004	-	-	PCB-1248	06:58:00	1	ND	.0055	No		culated_01262023.
14 004	-	water	30-Day Average	08/18/2022	-	lb/day	.0175	-		zip
				08/09/2022	-		.03	-		CDF Analytical Cal
M-004	-	-	PCB-1248	06:58:00	1	ND	.05	No		culated_01262023.
14 004	-	water	30-Day Average	08/18/2022	-	ug/L	.1	-		zip
				08/09/2022			.03	-		CDF_Analytical_Cal
M-004	-	-	PCB-1254		1	ND	.03	No		culated_01262023.
141-004	-	water	30-Day Average	06:58:00	-	ug/L	.1	-		zip
				08/18/2022	-	1	.0053			CDF Analytical Cal
M-004	-	-	PCB-1254	08/09/2022		ND	.0033	No		culated_01262023.
141-004	-	water	30-Day Average	06:58:00	1	lb/day	.0175	-		zip
			+	08/18/2022	-	1		+		CDF Analytical Cal
M-004	-	-	PCB-1260	08/09/2022	- 1	ND	.03	No		culated_01262023.
IVI-004	-	water	30-Day Average	06:58:00	1	ug/L	.1	-		zip
			+	08/18/2022		+		 		
M-004	-	-	PCB-1260	08/09/2022	- 1	ND	.0053	No		CDF_Analytical_Cal
IMI-UU4	-	water	30-Day Average	06:58:00	1	lb/day	- .0175	-		culated_01262023.
				08/18/2022	-	+				zip
M 004	-	-	Phenanthrene	08/09/2022	-	ND	.02	No		CDF_Analytical_Cal
M-004	-	water	30-Day Average	06:58:00	1	ug/L	_ 	-		culated_01262023.
			1	08/18/2022	-		.05			zip

Location	Collection Method, Depth (m)	Sample Type, Matrix	Parameter, Calculation Type	Sample Date, Sample Time, Analysis Date	Field Rep, Lab Rep, Lab Batch	Result, Units	MDL, ML, RL	Review Priority, QA Codes	Comments	Data Source
200411011	Deptii (iii)	Tiddiix		08/09/2022	-		.0035			CDF Analytical Cal
M-004	-	-	Phenanthrene	06:58:00	1	ND	-	No		culated 01262023.
	-	water	30-Day Average	08/18/2022	-	lb/day	.0875	-		zip –
			Dhanala Chlorinatad	08/09/2022	-	ND	.4726	No		CDF Analytical Cal
M-004	-	- water	Phenols, Chlorinated 6-Month Median	06:58:00	1	ND lb/day	-	No		culated_01262023.
	-	water	6-Month Median	08/18/2022	-	1b/day	2.4507	-		zip
	_	_	Phenols, Chlorinated	08/09/2022	-	ND	2.7	No		CDF_Analytical_Cal
M-004	_	water	6-Month Median	06:58:00	1	ug/L	-	-		culated_01262023.
		Water	o Month Median	08/18/2022	-	ug/L	14			zip
	_	_	Phenols, Non-chlorinated	08/09/2022	-	ND	1.295	No		CDF_Analytical_Cal
M-004	_	water	6-Month Median	06:58:00	1	lb/day	-	-		culated_01262023.
		Water	o Pioner Picalan	08/18/2022	-	16/day	5.776			zip
	_	_	Phenols, Non-chlorinated	08/09/2022	-	ND	7.4	No		CDF_Analytical_Cal
M-004	_	water	6-Month Median	06:58:00	1	ug/L	-	-		culated_01262023.
		Water		08/18/2022	-	ug/L	33			zip
	_	_	Polychlorinated Biphenyls (PCBs),	08/09/2022	-	ND	.21	No		CDF_Analytical_Cal
M-004	_	water	Sum	06:58:00	1	ug/L	-	-		culated_01262023.
	_	Water	30-Day Average	08/18/2022	-	ug/L	.7			zip
			Polychlorinated Biphenyls (PCBs),	08/09/2022	-	ND	.0368	No		CDF_Analytical_Cal
M-004	-	water	Sum	06:58:00	1	lb/day	-	INO		culated_01262023.
	_	water	30-Day Average	08/18/2022	-	1b/day	.1225	_		zip
			Polynuclear Aromatic Hydrocarbons	08/09/2022	-	ND	.47	No		CDF_Analytical_Cal
M-004	-	- water	(PAHs)	06:58:00	1	ug/L	-	INO		culated_01262023.
	-	water	30-Day Average	08/18/2022	-	ug/L	3.8	_		zip
			Polynuclear Aromatic Hydrocarbons	08/09/2022	-	ND	.0823	No		CDF Analytical Cal
M-004	-	- water	(PAHs)	06:58:00	1		-	INO		culated_01262023.
	-	water	30-Day Average	08/18/2022	-	lb/day	.6652	-		zip
			Dimana	08/09/2022	-	ND	.0035	No		CDF Analytical Cal
M-004	-	- water	Pyrene 30-Day Average	06:58:00	1	lb/day	-	No		culated_01262023.
	-	water	30-Day Average	08/18/2022	-	Ib/day	.0875	-		zip
			Pyrene	08/09/2022	-	ND	.02	No		CDF_Analytical_Cal
M-004	_	- water	30-Day Average	06:58:00	1	ug/L	-	INO		culated_01262023.
	-	water	30-Day Average	08/18/2022	-	ug/L	.05	_		zip
			Selenium, Total Recoverable	08/09/2022	-	= 0.175	.098	No		CDF_Analytical_Cal
M-004	-	- water	6-Month Median	06:58:00	2	- 0.173 lb/day	-	INO		culated_01262023.
	_	water	0-Month Median	08/12/2022	-	1b/day	.175	_		zip
			Selenium, Total Recoverable	08/09/2022	-	= 1	.56	No		CDF_Analytical_Cal
M-004	-	- water	6-Month Median	06:58:00	1	ug/L	-	INO		culated_01262023.
	_	water	0-Month Median	08/12/2022	-	ug/L	1	_		zip
			Selenium, Total Recoverable	08/09/2022	-	= 1	.56	No		CDF_Analytical_Cal
M-004	-	- water	6-Month Median	06:58:00	2	ug/L	-	INO		culated_01262023.
	_	water	0-Month Median	08/12/2022	-	ug/L	1	_		zip
			Selenium, Total Recoverable	08/09/2022	-	= 0.175	.098	No		CDF_Analytical_Cal
M-004	-	- water	6-Month Median	06:58:00	1	- 0.173 lb/day	-	INO		culated_01262023.
	_	water	0-Month Median	08/12/2022	-	1b/day	.175	_		zip
			Silver, Total Recoverable	08/09/2022	-	ND	.5951	No		CDF_Analytical_Cal
M-004	-	- water	6-Month Median	06:58:00	1	לא lb/day	-	INU		culated_01262023.
	<u> </u>	water	0-MOHUT MEGIAN	08/12/2022		ib/uay	1.7505			zip
			Silver, Total Recoverable	08/09/2022	-	ND	3.4	No		CDF_Analytical_Cal
M-004	<u>-</u>	- water	6-Month Median	06:58:00	2	นg/L	-	INU		culated_01262023.
	<u> </u>	water	0-MOHUT MEGIAN	08/12/2022	-	ug/L	10			zip
			Silver, Total Recoverable	08/09/2022	-	ND	.5951	No		CDF_Analytical_Cal
M-004	<u>-</u>	- water	6-Month Median	06:58:00	2	לא lb/day	-	INU		culated_01262023.
	<u> </u>	water	0-MOHUT MEGIAN	08/12/2022		ib/uay	1.7505			zip
			Silver, Total Recoverable	08/09/2022	-	ND	3.4	No		CDF_Analytical_Cal
M-004	-	- water	6-Month Median	06:58:00	1		-	INU		culated_01262023.
	<u> </u>	water	0-MOHUT MEGIAN	08/12/2022		ug/L	10			zip

Location	Collection Method, Depth (m)	Sample Type, Matrix	Parameter, Calculation Type	Sample Date, Sample Time, Analysis Date	Field Rep, Lab Rep, Lab Batch	Result, Units	MDL, ML, RL	Review Priority, QA Codes	Comments	Data Source
	_	_	TCDD Equivalents	08/09/2022	-	DNQ 0.0000000	.000002	No		CDF_Analytical_Cal
M-004	-	water	30-Day Average	06:58:00 09/06/2022	1 -	03	- .0001	-		culated_01262023.
				08/09/2022		lb/day DNQ	.000048			CDF_Analytical_Cal
M-004	-	- water	TCDD Equivalents 30-Day Average	06:58:00	1	0.0000000 19	-	No		culated_01262023.
	-	water	30-Day Average	09/06/2022	-	ug/L	.000577	_		zip
M-004	-	-	Tetrachloroethene	08/09/2022 06:58:00	- 1	ND	.19	No		CDF_Analytical_Cal culated_01262023.
141-004	-	water	30-Day Average	08/12/2022	-	ug/L	.5	-		zip
M-004	-	-	Tetrachloroethene	08/09/2022	- 1	ND	.0333	No		CDF_Analytical_Cal culated_01262023.
IVI-004	-	water	30-Day Average	06:58:00 08/12/2022	-	lb/day	.0875	-		zip
M 004	-	-	Thallium, Total Recoverable	08/09/2022	-	ND	.03	No		CDF_Analytical_Cal
M-004	-	water	30-Day Average	06:58:00 08/12/2022	1 -	ug/L	.2	-		culated_01262023. zip
	-	_	Thallium, Total Recoverable	08/09/2022	-	ND	.0053	No		CDF_Analytical_Cal
M-004	-	water	30-Day Average	06:58:00 08/12/2022	1 -	lb/day	- .035	-		culated_01262023.
	_	_	Toluene	08/09/2022	-	ND	.0332	No		CDF_Analytical_Cal
M-004	-	water	30-Day Average	06:58:00 08/12/2022	1	lb/day	- .0875	-		culated_01262023. zip
	_	_	Toluene	08/09/2022	-	ND	.19	No		CDF_Analytical_Cal
M-004	-	water	30-Day Average	06:58:00	1	ug/L	- .5	-		culated_01262023.
			Toxaphene	08/12/2022 08/09/2022	-	ND	.07	No		CDF_Analytical_Cal
M-004	-	- water	30-Day Average	06:58:00	1	ם אם lb/day	- .0875	No -		culated_01262023.
			T	08/18/2022 08/09/2022	<u>-</u>	ND	.0675	NI-		zip CDF Analytical Cal
M-004	- -	- water	Toxaphene 30-Day Average	06:58:00	1	ND ug/L	-	No -		culated_01262023.
				08/18/2022 08/09/2022	<u>-</u>	+	.5 .0023	<u>.</u>		zip CDF Analytical Cal
M-004	- -	- water	Tributyltin (TBT) 30-Day Average	06:58:00	1	ND ug/L	-	No -		culated_01262023.
			1	08/17/2022 08/09/2022	<u>-</u>	-	.005 .0004			zip CDF Analytical Cal
M-004	-	- water	Tributyltin (TBT) 30-Day Average	06:58:00	1	ND lb/day	-	No -		culated_01262023.
		Water		08/17/2022 08/09/2022	<u>-</u>	1	.00087 .2			zip CDF_Analytical_Cal
M-004	-	- water	Trichloroethene 30-Day Average	06:58:00	1	ND ug/L	-	No		culated_01262023.
	_	Water	Jo-Day Average	08/12/2022 08/09/2022	-	-	.5 .035			zip CDF Analytical Cal
M-004	-	- water	Trichloroethene 30-Day Average	06:58:00	1	ND lb/day	-	No		culated_01262023.
	-	water	30-Day Average	08/12/2022	-	1D/Udy	.0875			zip
M-004	-	-	Vinyl Chloride	08/09/2022 06:58:00	- 1	ND	.25 -	No		CDF_Analytical_Cal culated_01262023.
	-	water	30-Day Average	08/12/2022	-	ug/L	.5	-		zip
M-004	-	-	Vinyl Chloride	08/09/2022 06:58:00	- 1	ND	.0437 -	No		CDF_Analytical_Cal culated_01262023.
	-	water	30-Day Average	08/12/2022	<u>-</u>	lb/day	.0875	-		zip
M-004	-	-	Zinc, Total Recoverable	12/30/2022 07:00:00	- 1	DNQ 12	7	No		CDF_Analytical_Cal culated_01262023.
1.1 004	-	water	6-Month Median	01/04/2023	-	ug/L	14	-		zip
M-004	-	-	Zinc, Total Recoverable	12/30/2022	- 2	DNQ 12	7	No		CDF_Analytical_Cal culated_01262023.
141-004	<u> </u>	water	6-Month Median	07:00:00 01/04/2023	-	ug/L	- 14			zip
M 004	-	-	Zinc, Total Recoverable	12/30/2022	- 2	DNQ 2.28	1.261	No		CDF_Analytical_Cal
M-004	-	water	6-Month Median	07:00:00 01/04/2023	2	lb/day	- 2.522	-		culated_01262023. zip

Location	Collection Method, Depth (m)	Sample Type, Matrix	Parameter, Calculation Type	Sample Date, Sample Time, Analysis Date	Field Rep, Lab Rep, Lab Batch	Result, Units	MDL, ML, RL	Review Priority, QA Codes	Comments	Data Source
M-004	-	- water	Zinc, Total Recoverable 6-Month Median	12/30/2022 07:00:00 01/04/2023	1 -	DNQ 2.28 lb/day	1.261 - 2.522	No -		CDF_Analytical_Cal culated_01262023. zip

Lab Batches

No Lab Batch Data Available / Reported

Questionnaire

No Questionnaire Available

Certificate

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

I certify that I am Octavio Navarrete and am authorized to submit this report on behalf of Carlsbad WRF / Encina Ocean Outfall / Encina Water Pollution Control Facility / Vallecitos WD Meadowlark WRP. I understand that I am submitting the following report(s):

- Semi-Annual SMR (MONNPDES) report for H2 2022 (due 02/01/2023)

I understand that data submitted in this report(s) can be used by authorized agencies for water quality management related analyses and enforcement actions, if required.

I am also aware that my user ID, password, and answer to a challenge question constitute my electronic signature and any information I indicate I am electronically certifying contains my signature. I understand that my electronic signature is the legal equivalent of my handwritten signature. I certify that I have not violated any term in my Electronic Signature Agreement and that I am otherwise without any reason to believe that the confidentiality of my password and challenge question answers have been compromised now or at any time prior to this submission. I understand that this attestation of fact pertains to the implementation, oversight, and enforcement of a federal environmental program and must be true to the best of my knowledge.

Name: Octavio Navarrete

Title: Chief Plant Operator

FINAL REPORT

Work Orders: 2C22092 Report Date: 5/05/2022

Received Date: 03/22/2022

Project: 2022 Annual CWRF Effluent Priority Pollutant Scan

Turnaround Time: Normal

Phones: (760) 268-8801

Fax:

P.O. #:

Billing Code:

Attn: Jeff Parks

Client: Encina Wastewater Authority

6200 Avenida Encinas Carlsbad, CA 92011

EPA-UCMR #CA00211 • LACSD #10143 • NJ-DEP #CA015 • NV-DEP #NAC 445A • SCAQMD #93LA1006

This is a complete final report. The information in this report applies to the samples analyzed in accordance with the chain-of-custody document. Weck Laboratories certifies that the test results meet all requirements of TNI unless noted by qualifiers or written in the Case Narrative. This analytical report must be reproduced in its entirety.

Dear Jeff Parks,

Enclosed are the results of analyses for samples received 3/22/22 with the Chain-of-Custody document. The samples were received in good condition, at 2.4 °C and on ice. All analyses met the method criteria except as noted in the case narrative or in the report with data qualifiers.

Reviewed by:

Kim G. Tu Project Manager

FINAL REPORT

Encina Wastewater Authority 6200 Avenida Encinas Carlsbad, CA 92011 **Project Number:** 2022 Annual CWRF Effluent Priority

Pollutant Scan

Reported: 05/05/2022 09:15

Project Manager: Jeff Parks

Sample Name	Sampled By	Lab ID	Matrix	Sampled	Qualifiers
CWRF Effluent 03/21-03/22/21	Adam Powell	2C22092-01	Water	03/22/22 07:11	
CWRF Effluent 03/22/21	Adam Powell	2C22092-02	Water	03/22/22 07:11	

2C22092 Page 2 of 36

FINAL REPORT

Encina Wastewater Authority 6200 Avenida Encinas Carlsbad, CA 92011 Project Number: 2022 Annual CWRF Effluent Priority

Pollutant Scan

Reported: 05/05/2022 09:15

Project Manager: Jeff Parks

Sample: CWRF Effluent 03/21-03/22/21

Sampled: 03/22/22 7:11 by Adam Powell

2C22092-01	(Water)
------------	---------

Lector or (vacer)							
Analyte	Result	MDL	MRL	Units	Dil	Analyzed	Qualifier
id and Base/Neutral Extractables by GC/MS							
Method: EPA 625.1			Instr: GCMS06				
Batch ID: W2C1684	Preparation: EPA 625/L-L SF	0.00	Prepared: 03/2		0	04/04/00	Analyst: rmr
-,_,	ND ND	0.98	2.0	ug/l	2	04/01/22	M-04
1,2 216111616261.26116	ND ND	0.92	2.0	ug/l	2	04/01/22	M-04
i,2 Diprioriyiriyarazirie// izezerizerie	ND	0.60	2.0	ug/l	2	04/01/22	M-04
·,•	ND ND	0.84	2.0	ug/l	2	04/01/22	M-04
i, i Disimologo.i.zono	ND	0.96	2.0	ug/l	2	04/01/22	M-04
2, 1,6 11161116161	ND	0.44	2.0	ug/l	2	04/01/22	M-04
2, . 2.6	ND	0.52	2.0	ug/l	2	04/01/22	M-04
_,	ND	1.5	2.0	ug/l	2	04/01/22	M-04
2,4-Dinitrophenol	ND	3.7	20	ug/l	2	04/01/22	M-04
2,4-Dinitrotoluene	ND	0.92	2.0	ug/l	2	04/01/22	M-04
2,6-Dinitrotoluene	ND	0.54	2.0	ug/l	2	04/01/22	M-04
2-Chloronaphthalene	ND	0.90	2.0	ug/l	2	04/01/22	M-04
2-Chlorophenol	ND	0.56	2.0	ug/l	2	04/01/22	M-04
2-Methyl-4,6-dinitrophenol	ND	1.0	10	ug/l	2	04/01/22	M-04
2-Nitrophenol	ND	0.52	2.0	ug/l	2	04/01/22	M-04
3,3'-Dichlorobenzidine	ND	5.0	10	ug/l	2	04/01/22	M-04
4-Bromophenyl phenyl ether	ND	0.72	2.0	ug/l	2	04/01/22	M-04
4-Chloro-3-methylphenol	ND	0.46	2.0	ug/l	2	04/01/22	M-04
4-Chlorophenyl phenyl ether	ND	0.82	2.0	ug/l	2	04/01/22	M-04
4-Nitrophenol	ND	2.5	10	ug/l	2	04/01/22	M-04
Acenaphthene	ND	0.76	2.0	ug/l	2	04/01/22	M-04
Acenaphthylene	ND	0.70	2.0	ug/l	2	04/01/22	M-04
Anthracene	ND	0.82	2.0	ug/l	2	04/01/22	M-04
Benzidine	ND	6.4	20	ug/l	2	04/01/22	M-04
Benzo (a) anthracene	ND	0.38	2.0	ug/l	2	04/01/22	M-04
Benzo (a) pyrene	ND	0.78	2.0	ug/l	2	04/01/22	M-04
Benzo (b) fluoranthene	ND	0.92	2.0	ug/l	2	04/01/22	M-04
Benzo (g,h,i) perylene	ND	0.84	4.0	ug/l	2	04/01/22	M-04
Benzo (k) fluoranthene	ND	0.44	2.0	ug/l	2	04/01/22	M-04
Bis(2-chloroethoxy)methane	ND	0.50	2.0	ug/l	2	04/01/22	M-04
Bis(2-chloroethyl)ether	ND	0.54	2.0	ug/l	2	04/01/22	M-04
Bis(2-chloroisopropyl)ether	ND	0.76	2.0	ug/l	2	04/01/22	M-04
	20	4.6	10	ug/l	2	04/01/22	M-04
, , , , , , , , , , , , , , , , , , , ,		0.98	2.0	ug/l	2	04/01/22	M-04
				_			

FINAL REPORT

Encina Wastewater Authority 6200 Avenida Encinas Carlsbad, CA 92011

Sample:

2C22092

Project Number: 2022 Annual CWRF Effluent Priority

Pollutant Scan

Reported: 05/05/2022 09:15

(Continued)

Project Manager: Jeff Parks

Sample Results

CWRF Effluent 03/21-03/22/21

Sampled: 03/22/22 7:11 by Adam Powell

Page 4 of 36

Medical of Biase/Neutral Extractables by GC/MS (Continue)	2C22092-01 (Water)							(Continued)
Method: EPA 625.1 Preparation: FPA 675/1-1 FILE	Analyte	Result	MDL	MRL	Units	Dil	Analyzed	Qualifier
Seatch ID: W2C1684	Acid and Base/Neutral Extractables by 0	GC/MS (Continued)						
Debthy phthalate	Method: EPA 625.1			Instr: GCMS06				
Diethyl phthalate	Batch ID: W2C1684	Preparation: EPA 625/L-L SF		Prepared: 03/2	24/22 08:37			Analyst: rmr
Dimetryl phthalate	Dibenzo (a,h) anthracene	ND	0.30	4.0	ug/l	2	04/01/22	M-04
Di-n-butyl phthalate	Diethyl phthalate	ND ND	0.70	2.0	ug/l	2	04/01/22	M-04
Din-n-ctyl phthalate	Dimethyl phthalate	ND	0.36	2.0	ug/l	2	04/01/22	M-04
Fluoranthene	Di-n-butyl phthalate	ND	0.68	2.0	ug/l	2	04/01/22	M-04
Fluorene	Di-n-octyl phthalate	ND	0.92	2.0	ug/l	2	04/01/22	M-04
Hexachlorobenzene	Fluoranthene	ND	0.69	2.0	ug/l	2	04/01/22	M-04
Hexachlorobutadiene	Fluorene	ND	0.70	2.0	ug/l	2	04/01/22	M-04
Hexachlorocyclopentadiene	Hexachlorobenzene	ND	0.98	2.0	ug/l	2	04/01/22	M-04
Hexachloroethane	Hexachlorobutadiene	ND	0.94	2.0	ug/l	2	04/01/22	M-04
Indeno (1,2,3-cd) pyrene	Hexachlorocyclopentadiene	ND	0.62	10	ug/l	2	04/01/22	M-04
Suphorone 0.89 0.42 2.0 ug/l 2 0.4/01/22 J.N04 Naphthalene ND 0.98 2.0 ug/l 2 0.4/01/22 M04 Naphthalene ND 0.72 2.0 ug/l 2 0.4/01/22 M04 NNitrosodimethylamine ND 0.72 2.0 ug/l 2 0.4/01/22 M04 NNitrosodimethylamine ND 0.52 2.0 ug/l 2 0.4/01/22 M04 NNitrosodimethylamine ND 0.52 2.0 ug/l 2 0.4/01/22 M04 NNitrosodiphenylamine ND 0.52 2.0 ug/l 2 0.4/01/22 M04 NNitrosodiphenylamine ND 0.88 2.0 ug/l 2 0.4/01/22 M04 NNitrosodiphenylamine ND 0.80 2.0 ug/l 2 0.4/01/22 M04 NNitrosodiphenylamine ND 0.64 2.0 ug/l 2 0.4/01/22 M04 NNitrosodiphenol ND 0.64 2.0 ug/l 2 0.4/01/22 M04 NNitrosodiphenol ND 0.64 2.0 ug/l 2 0.4/01/22 M04 NNitrosodiphenol ND 0.50 0.001 Ug/l 2 0.4/01/22 M04 NNitrosodiphenol ND 0.50 0.001 ND 0.001	Hexachloroethane	ND	1.0	2.0	ug/l	2	04/01/22	M-04
Naphthalene	Indeno (1,2,3-cd) pyrene	ND	0.49	4.0	ug/l	2	04/01/22	M-04
Nitrobenzene ND 0.72 2.0 ug/l 2 04/01/22 M-04 N-Nitrosodimethylamine ND 1.0 2.0 ug/l 2 04/01/22 M-04 N-Nitrosodimethylamine ND 0.52 2.0 ug/l 2 04/01/22 M-04 N-Nitrosodiphenylamine ND 0.52 2.0 ug/l 2 04/01/22 M-04 N-Nitrosodiphenylamine ND 0.38 2.0 ug/l 2 04/01/22 M-04 Pentachlorophenol ND 0.80 2.0 ug/l 2 04/01/22 M-04 Phenathirene ND 0.64 2.0 ug/l 2 04/01/22 M-04 Phenol ND 0.64 2.0 ug/l 2 04/01/22 M-04 Phenol ND 0.66 2.0 ug/l 2 04/01/22 M-04 Phenol ND 0.66 2.0 ug/l 2 04/01/22 M-04 Pyrene ND 0.50 2.0 ug/l 2 04/01/22 M-04 ND 0.50 2.0 ug/l 2 04/01/22 ND 04/01/22 N	Isophorone	0.89	0.42	2.0	ug/l	2	04/01/22	J, M-04
N-Nitrosodimethylamine ND 1.0 2.0 ug/l 2 04/01/22 M-04 N-Nitrosodiphenylamine ND 0.52 2.0 ug/l 2 04/01/22 M-04 N-Nitrosodiphenylamine ND 0.38 2.0 ug/l 2 04/01/22 M-04 N-Nitrosodiphenylamine ND 0.80 2.0 ug/l 2 04/01/22 M-04 Pentachlorophenol ND 0.80 2.0 ug/l 2 04/01/22 M-04 Phenanthrene ND 0.64 2.0 ug/l 2 04/01/22 M-04 Phenanthrene ND 0.64 2.0 ug/l 2 04/01/22 M-04 Phenol ND 1.6 2.0 ug/l 2 04/01/22 M-04 Pyrene ND 0.50 2.0 ug/l 2 04/01/22 M-04 Pyrene ND 0.60 2.5 12-120 04/01/22 M-04 Pyrene ND 0.60 2.5 12-120 04/01/22 M-04 Pyrene ND 0.60 2.5 12-120 04/01/22 M-04 Pyrene ND 0.60 2.5 ug/l 5 03/31/22 M-04 Pyrene-d-5 ND 0.003 0.25 ug/l 5 03/31/22 M-04 Pyrene-d-5 ND 0.003 0.25 ug/l 5 03/31/22 M-04 Pyrene-d-5 ND 0.003 0.25 ug/l 5 03/31/22 M-04 Pyrene-d-5 ND 0.003 0.05 0.05 ug/l 5 03/31/22 M-04 Pyrene-d-5 ND 0.003 0.05 0.05 ug/l 5 03/31/22 M-04 Pyrene-d-5 ND 0.003 0.05 0.05 ug/l 5 03/31/22 M-04 Pyrene-d-5 ND 0.003 0.05 0.05 ug/l 5 03/31/22 M-04 Pyrene-d-5 ND 0.003 0.05 0.05 ug/l 5 03/31/22 M-04 Pyrene-d-5 ND 0.003 0.05 0.05 ug/l 5 03/31/22 M-04 Pyrene-d-5 ND 0.003 0.05 0.05 ug/l 5 03/31/22 M-04 Pyrene-d-5 ND 0.003 0.05 0.05 ug/l 5 03/31/22 M-04 Pyrene-d-5 ND 0.003 0.05 0.05 ug/l 5 03/31/22 M-04 Pyrene-d-5 ND 0.003 0.05 0.05 ug/l 5 03/31/22 M-04 Pyrene-d-5 ND 0.003 0.05 0.05 ug/l 5 03/31/22 M-04 Pyrene-d-5 ND 0.003 0.05 0.05 ug/l 5 03/31/22 M-04 Pyrene-d-5 ND 0.003 0.05 ug/l 5 03/31/22 M-04 Pyrene-d-5 ND 0.003 0.05 0.05 ug/l 5 03/31/22 M-04 Pyrene-d-5 ND 0.003 0.05 0.05 ug/l 5 03/31/22 M-04 Pyrene-d-5 ND 0.003 0.05 ug/l 5 03/31/22 M-04 Pyrene-d-5 ND 0.0	Naphthalene	ND	0.98	2.0	ug/l	2	04/01/22	M-04
N-Nitrosodip-n-propylamine ND 0.52 2.0 ug/l 2 04/01/22 M-04 N-Nitrosodiphenylamine ND 0.38 2.0 ug/l 2 04/01/22 M-04 Pentachlorophenol ND 0.80 2.0 ug/l 2 04/01/22 M-04 Phenanthrene ND 0.64 2.0 ug/l 2 04/01/22 M-04 Phenol ND 1.6 2.0 ug/l 2 04/01/22 M-04 Phenol ND 0.50 2.0 ug/l 2 04/01/22 M-04 Pyrene ND 0.50 2.0 ug/l 2 04/01/22 M-04 Surrogate(s) 2.4.6-Tribromophenol 84% Conc: 34.2 25-120 04/01/22 M-04 Surrogate(s) 2.4.6-Tribromophenol 84% Conc: 34.2 25-120 04/01/22 M-04 Surrogate(s) 2.4.6-Tribromophenol 47% Conc: 14.3 22-120 04/01/22 M-04 Surrogate(s) 2.4-Fluorobiphenyl 70% Conc: 14.3 22-120 04/01/22 M-04 Surrogate(s) 2.4-Fluorophenol 47% Conc: 19.0 17-120 04/01/22 M-04 M-04 Surrogate(s) 2.4-Fluorophenol 47% Conc: 19.0 17-120 04/01/22 M-04 M-04 Surrogate(s) 2.4-Fluorophenol 47% Conc: 19.0 17-120 04/01/22 M-04 M-04 Surrogate(s) 2.4-Fluorophenol 47% Conc: 19.0 17-120 04/01/22 M-04 M-04 Surrogate(s) 2.4-Fluorophenol 47% Conc: 19.0 17-120 04/01/22 M-04 M-04 Surrogate(s) 2.4-Fluorophenol 47% Conc: 19.0 17-120 04/01/22 M-04 M-04 Surrogate(s) 2.4-Fluorophenol 47% Conc: 19.0 17-120 04/01/22 M-04 M-04 M-04 M-04 M-04 M-04 M-04 M-04	Nitrobenzene	ND	0.72	2.0	ug/l	2	04/01/22	M-04
N-Nitrosodiphenylamine	N-Nitrosodimethylamine	ND	1.0	2.0	ug/l	2	04/01/22	M-04
Pentachlorophenol ND 0.80 2.0 ug/l 2 04/01/22 M-04	N-Nitrosodi-n-propylamine	ND	0.52	2.0	ug/l	2	04/01/22	M-04
Phenanthrene ND 0.64 2.0 ug/l 2 04/01/22 M-04	N-Nitrosodiphenylamine	ND	0.38	2.0	ug/l	2	04/01/22	M-04
Phenol	Pentachlorophenol	ND	0.80	2.0	ug/l	2	04/01/22	M-04
Pyrene ND 0.50 2.0 ug/l 2 04/01/22 M-04 Surrogate(s) 2,4,6-Tribromophenol 84% Conc: 34.2 25-120 04/01/22 2-10 2-10 2-10 2-10	Phenanthrene		0.64	2.0	ug/l	2	04/01/22	M-04
Surrogate(s)	Phenol	ND	1.6	2.0	ug/l	2	04/01/22	M-04
2,4,6-Tribromophenol 84% Conc: 34.2 25-120 04/01/22 2-Fluorobiphenyl 70% Conc: 14.3 22-120 04/01/22 2-Fluorophenol 47% Conc: 19.0 17-120 04/01/22 Nitrobenzene-d5 69% Conc: 14.0 47-120 04/01/22 Phenol-d5 31% Conc: 12.5 12-120 04/01/22 Terphenyl-d14 96% Conc: 19.5 44-129 04/01/22 Chlorinated Pesticides and/or PCBs by GC/ECD Method: EPA 608.3 Instr: GC07 Batch ID: W2C1576 Preparation: EPA 608/L-L SF Prepared: 03/23/22 08:32 Analyst: RJG 4,4'-DDD ND 0.025 0.25 ug/l 5 03/31/22 M-04 4,4'-DDE ND 0.0035 0.25 ug/l 5 03/31/22 M-04 4,4'-DDT ND 0.0055 0.050 ug/l 5 03/31/22 M-04	Pyrene	ND	0.50	2.0	ug/l	2	04/01/22	M-04
2,4,6-Tribromophenol 84% Conc: 34.2 25-120 04/01/22 2-Fluorobiphenyl 70% Conc: 14.3 22-120 04/01/22 2-Fluorophenol 47% Conc: 19.0 17-120 04/01/22 Nitrobenzene-d5 69% Conc: 14.0 47-120 04/01/22 Phenol-d5 31% Conc: 12.5 12-120 04/01/22 Terphenyl-d14 96% Conc: 19.5 44-129 04/01/22 Chlorinated Pesticides and/or PCBs by GC/ECD Method: EPA 608.3 Instr: GC07 Batch ID: W2C1576 Preparation: EPA 608/L-L SF Prepared: 03/23/22 08:32 Analyst: RJG 4,4'-DDD ND 0.025 0.25 ug/l 5 03/31/22 M-04 4,4'-DDE ND 0.0035 0.25 ug/l 5 03/31/22 M-04 4,4'-DDT ND 0.0055 0.050 ug/l 5 03/31/22 M-04	Surrogate(s)							
2-Fluorophenol 47% Conc: 19.0 17-120 04/01/22 Nitrobenzene-d5 69% Conc: 14.0 47-120 04/01/22 Phenol-d5 31% Conc: 12.5 12-120 04/01/22 Terphenyl-d14 96% Conc: 19.5 44-129 04/01/22 Chlorinated Pesticides and/or PCBs by GC/ECD Method: EPA 608.3 Instr: GC07 Batch ID: W2C1576 Preparation: EPA 608/L-L SF Prepared: 03/23/22 08:32 Analyst: RJG 4,4'-DDD ND 0.25 0.25 ug/l 5 03/31/22 M-04 4,4'-DDE ND 0.0035 0.25 ug/l 5 03/31/22 M-04 4,4'-DDT ND 0.0055 0.050 ug/l 5 03/31/22 M-04	_	84%	Conc: 34.2	25-120			04/01/22	
Nitrobenzene-d5	2-Fluorobiphenyl	70%	Conc: 14.3	22-120			04/01/22	
Phenol-d5 31% Conc: 12.5 12-120 04/01/22 Terphenyl-d14 96% Conc: 19.5 44-129 04/01/22 Chlorinated Pesticides and/or PCBs by GC/ECD Method: EPA 608.3 Instr: GC07 Batch ID: W2C1576 Preparation: EPA 608/L-L SF Prepared: 03/23/22 08:32 Analyst: RJG 4,4'-DDD ND 0.25 0.25 ug/l 5 03/31/22 M-04 4,4'-DDE ND 0.0035 0.25 ug/l 5 03/31/22 M-04 4,4'-DDT ND 0.0055 0.050 ug/l 5 03/31/22 M-04	2-Fluorophenol	47%	Conc: 19.0	17-120			04/01/22	
Phenol-d5 31% Conc: 12.5 12-120 04/01/22 Terphenyl-d14 96% Conc: 19.5 44-129 04/01/22 Chlorinated Pesticides and/or PCBs by GC/ECD Method: EPA 608.3 Instr: GC07 Batch ID: W2C1576 Preparation: EPA 608/L-L SF Prepared: 03/23/22 08:32 Analyst: RJG 4,4'-DDD ND 0.25 0.25 ug/l 5 03/31/22 M-04 4,4'-DDE ND 0.0035 0.25 ug/l 5 03/31/22 M-04 4,4'-DDT ND 0.0055 0.050 ug/l 5 03/31/22 M-04	Nitrobenzene-d5	69%	Conc: 14.0	47-120			04/01/22	
Terphenyl-d14 96% Conc: 19.5 44-129 04/01/22 Chlorinated Pesticides and/or PCBs by GC/ECD Method: EPA 608.3 Instr: GC07 Batch ID: W2C1576 Preparation: EPA 608/L-L SF Prepared: 03/23/22 08:32 Analyst: RJG 4,4'-DDD ND 0.25 0.25 ug/l 5 03/31/22 M-04 4,4'-DDE ND 0.0035 0.25 ug/l 5 03/31/22 M-04 4,4'-DDT ND 0.0055 0.050 ug/l 5 03/31/22 M-04	Phenol-d5							
Chlorinated Pesticides and/or PCBs by GC/ECD Method: EPA 608.3 Instr: GC07 Batch ID: W2C1576 Preparation: EPA 608/L-L SF Prepared: 03/23/22 08:32 Analyst: RJG 4,4'-DDD ND 0.25 0.25 ug/l 5 03/31/22 M-04 4,4'-DDE ND 0.0035 0.25 ug/l 5 03/31/22 M-04 4,4'-DDT ND 0.0055 0.050 ug/l 5 03/31/22 M-04								
Method: EPA 608.3 Instr: GC07 Batch ID: W2C1576 Preparation: EPA 608/L-L SF Prepared: 03/23/22 08:32 Analyst: RJG 4,4'-DDD ND 0.25 0.25 ug/l 5 03/31/22 M-04 4,4'-DDE ND 0.0035 0.25 ug/l 5 03/31/22 M-04 4,4'-DDT ND 0.0055 0.050 ug/l 5 03/31/22 M-04								
Batch ID: W2C1576 Preparation: EPA 608/L-L SF Prepared: 03/23/22 08:32 Analyst: RJG 4,4'-DDD ND 0.25 0.25 ug/l 5 03/31/22 M-04 4,4'-DDE ND 0.0035 0.25 ug/l 5 03/31/22 M-04 4,4'-DDT ND 0.0055 0.050 ug/l 5 03/31/22 M-04	•	GC/ECD		L				
4,4'-DDD ND 0.25 0.25 ug/l 5 03/31/22 M-04 4,4'-DDE ND 0.0035 0.25 ug/l 5 03/31/22 M-04 4,4'-DDT ND 0.0055 0.050 ug/l 5 03/31/22 M-04		Dunnantian FDA CORUL CE			12/22 00.22			Amalianta DIC
4,4'-DDE		•	0.25	-		5	03/31/22	•
4,4'-DDT ND 0.0055 0.050 ug/l 5 03/31/22 M-04	,				-			
-g	.,				· ·			
	.,				-			

FINAL REPORT

Encina Wastewater Authority 6200 Avenida Encinas Carlsbad, CA 92011 Project Number: 2022 Annual CWRF Effluent Priority

Pollutant Scan

Reported: 05/05/2022 09:15

Project Manager: Jeff Parks

Sample Results

Sample:	CWRF Effluent 03/21-03/22/						Sampied	. 03/22/22 7.11	by Adam Powell (Continued)
Analyte	2C22092-01 (Water)		Result	MDL	MRL	Units	Dil	Analyzed	Qualifier
-	sticides and/or PCBs by GC/ECD	(Continued)	Result	WID L	MILL	Oilles	J.I.	Analyzeu	Quanner
Method: EPA	608.3				Instr: GC07				
Batch ID: W	/2C1576	Preparation: EPA 608/L-L SF			Prepared: 03/2	23/22 08:32			Analyst: RJG
alpha-BHC			- ND	0.0055	0.050	ug/l	5	03/31/22	M-04
Aroclor 101	6		- ND	5.0	5.0	ug/l	5	03/31/22	M-04, R-01
Aroclor 122	21		- ND	5.0	5.0	ug/l	5	03/31/22	M-04, R-01
Aroclor 123	32		- ND	5.0	5.0	ug/l	5	03/31/22	M-04, R-01
Aroclor 124	12		- ND	5.0	5.0	ug/l	5	03/31/22	M-04, R-01
Aroclor 124	l8		- ND	5.0	5.0	ug/l	5	03/31/22	M-04, R-01
Aroclor 125	54		ND	5.0	5.0	ug/l	5	03/31/22	M-04, R-01
Aroclor 126	60		- ND	5.0	5.0	ug/l	5	03/31/22	M-04, R-01
beta-BHC			- ND	0.0075	0.025	ug/l	5	03/31/22	M-04
Chlordane	(tech)		. ND	2.5	2.5	ug/l	5	03/31/22	M-04, R-01
delta-BHC	,		. ND	0.0095	0.025	ug/l	5	03/31/22	M-04
Dieldrin				0.0040	0.050	ug/l	5	03/31/22	M-04
Endosulfan				0.0045	0.10	ug/l	5	03/31/22	M-04
Endosulfan				0.0035	0.050	ug/l	5	03/31/22	M-04
Endosulfan				0.0065	0.25	ug/l	5	03/31/22	M-04
				0.0085	0.050	ug/l	5	03/31/22	M-04
Endrin alde				0.0005	0.050	-	5	03/31/22	M-04
	,					ug/l			
•	(2			0.0020	0.10	ug/l	5	03/31/22	M-04
Heptachlor				0.050	0.050	ug/l	5	03/31/22	M-04
Heptachlor	•			0.0020	0.050	ug/l	5	03/31/22	M-04
Toxaphene			- ND	5.0	5.0	ug/l	5	03/31/22	M-04, R-01
Surrogate(s)									
Decachloro					33-133			03/31/22	
Tetrachloro	-meta-xylene		- 54%	Conc: 0.0545	32-130			03/31/22	
onventional C	Chemistry/Physical Parameters b	y APHA/EPA/ASTM Methods							
Method: EPA	335.4				Instr: AA01				
Batch ID: W	/2C1746	Preparation: _NONE (WETCHEM	1)		Prepared: 03/2	24/22 14:46			Analyst: JOG
Cyanide, T	otal		8.1	3.8	5.0	ug/l	1	03/26/22	
letals by EPA	200 Series Methods								
Method: EPA	200.7				Instr: ICP03				
Batch ID: W	/2C1630	Preparation: EPA 200.2			Prepared: 03/2	23/22 11:04			Analyst: mpn
Aluminum,			- ND	0.041	0.050	mg/l	1	04/06/22	7
Barium, To	tal		0.016	0.00020	0.0020	mg/l	1	03/30/22	
Method: EPA	245.1				Instr: HG03	-			
		Dunmant's EDA 045 4				22/22 45:45			Amelian local
Batch ID: W Mercury, To		Preparation: EPA 245.1	- ND	0.017	0.050 Prepared: 03/2	22/22 15:45 ug/l	1	03/24/22	Analyst: KVM
C22092					5.000	~⊕′'	•	- 0	Page 5 of 3

FINAL REPORT

Encina Wastewater Authority 6200 Avenida Encinas Carlsbad, CA 92011

Sample Results

Project Number: 2022 Annual CWRF Effluent Priority

Pollutant Scan

Reported: 05/05/2022 09:15

Project Manager: Jeff Parks

Sample:	CWRF Effluent 03/21-03/22/2	1					Sampled:	03/22/22 7:11	by Adam Powell
	2C22092-01 (Water)								(Continued)
Analyte			Result	MDL	MRL	Units	Dil	Analyzed	Qualifier
letals by EPA	A 200 Series Methods (Continued)								
Method: EPA	A 245.1				Instr: HG03				
Batch ID: \	W2C1545	Preparation: EPA 245.1			Prepared: 03/2	22/22 15:45			Analyst: KVM
erchlorate by	y EPA 314.0								
Method: EPA	A 314.0				Instr: LC08_Cha	annel1			
Batch ID: \	W2C1771	Preparation: _NONE (LC)			Prepared: 03/2	25/22 10:10			Analyst: JAN
Perchlorat	te		- ND	0.39	2.0	ug/l	1	03/25/22	

FINAL REPORT

Encina Wastewater Authority 6200 Avenida Encinas Carlsbad, CA 92011 Project Number: 2022 Annual CWRF Effluent Priority

Pollutant Scan

Reported: 05/05/2022 09:15

Project Manager: Jeff Parks

Sample Results

Sample:	CWRF Effluent 03/22/21						Sampled	1: 03/22/22 7:11	by Adam Powell
	2C22092-02 (Water)								
Analyte			Result	MDL	MRL	Units	Dil	Analyzed	Qualifier
olatile Organ	nic Compounds by P&T and GC/N	NS							
Method: EPA	A 624.1				Instr: GCMS21	l			
Batch ID:		Preparation: EPA 5030B			Prepared: 03/				Analyst: ADM
			ND	0.31	1.0	ug/l	1	03/23/22	
				0.38	1.0	ug/l	1	03/23/22	
				0.42	1.0	ug/l	1	03/23/22	
1,1-Dichlo			2	0.32	1.0	ug/l	1	03/23/22	
1,1-Dichlo				0.32	1.0	ug/l	1	03/23/22	
1,2-Dichlo				0.54	1.0	ug/l	1	03/23/22	
				0.42	1.0	ug/l	1	03/23/22	
2-Butanor				2.0	5.0	ug/l	1	03/23/22	
	, ,			0.19	1.0	ug/l	1	03/23/22	
2-Hexano				0.46	5.0	ug/l	1	03/23/22	
4-Methyl-2	•			0.59	5.0	ug/l	1	03/23/22	
Acrolein -				1.2	5.0	ug/l	1	03/23/22	
Acrylonitri				0.63	2.0	ug/l	1	03/23/22	
Benzene				0.47	1.0	ug/l	1	03/23/22	
Bromodic	chloromethane		1.9	0.44	1.0	ug/l	1	03/23/22	
Bromofor	m		0.37	0.27	1.0	ug/l	1	03/23/22	J
Bromome	thane		· ND	0.50	1.0	ug/l	1	03/23/22	
Carbon D				0.33	1.0	ug/l	1	03/23/22	J
Carbon te	trachloride		ND	0.28	1.0	ug/l	1	03/23/22	
Chlorober	nzene		ND	0.35	1.0	ug/l	1	03/23/22	
Chloroeth	ane		ND	0.38	1.0	ug/l	1	03/23/22	
Chlorofor	m		5.9	0.29	1.0	ug/l	1	03/23/22	
Chlorome	thane		ND	0.29	1.0	ug/l	1	03/23/22	
cis-1,3-Die	chloropropene		ND	0.36	1.0	ug/l	1	03/23/22	
Dibromod	chloromethane		0.44	0.35	1.0	ug/l	1	03/23/22	J
Dichlorodi	ifluoromethane (Freon 12)		· ND	0.30	1.0	ug/l	1	03/23/22	
Ethylbenz	ene		ND	0.41	1.0	ug/l	1	03/23/22	
m-Dichlor	obenzene		· ND	0.39	1.0	ug/l	1	03/23/22	
Methyl ter	t-butyl ether (MTBE)		ND	0.40	1.0	ug/l	1	03/23/22	
Methylene	e chloride		ND	0.39	1.0	ug/l	1	03/23/22	
o-Dichloro	bbenzene		ND	0.35	1.0	ug/l	1	03/23/22	
p-Dichloro	bbenzene		ND	0.42	1.0	ug/l	1	03/23/22	
Tetrachlor	oethene		ND	0.34	1.0	ug/l	1	03/23/22	
Toluene -			ND	0.36	1.0	ug/l	1	03/23/22	
trans-1,2-	Dichloroethene		ND	0.27	1.0	ug/l	1	03/23/22	

03/25/22

03/25/22

03/25/22

FINAL REPORT

Encina Wastewater Authority 6200 Avenida Encinas Carlsbad, CA 92011

1,2-Dichloroethane-d4

4-Bromofluorobenzene

Toluene-d8

Sample Results

Project Number: 2022 Annual CWRF Effluent Priority

Pollutant Scan

Reported: 05/05/2022 09:15

Project Manager: Jeff Parks

(Continued)

by Adam Powe	03/22/22 7:11	Sampled:						CWRF Effluent 03/22/21	Sample:
(Continued								2C22092-02 (Water)	
Qualifi	Analyzed	Dil	Units	MRL	MDL	Result			Analyte
							AS (Continued)	nic Compounds by P&T and GC/N	olatile Organ
				Instr: GCMS21				A 624.1	Method: EPA
Analyst: ADN			3/22 08:10	Prepared: 03/23			Preparation: EPA 5030B	W2C1574	Batch ID: \
	03/23/22	1	ug/l	1.0	0.33	ND		Dichloropropene	trans-1,3-l
	03/23/22	1	ug/l	1.0	0.34	ND		ethene	Trichloroe
	03/23/22	1	ug/l	1.0	0.43	ND		luoromethane	Trichloroflu
	03/23/22	1	ug/l	1.0	0.31	ND		ride	Vinyl chlor
									Surrogate(s)
	03/23/22			82-125	Conc: 47.4				1,2-Dichlo
	03/23/22			88-108	Conc: 51.4	103%		luorobenzene	4-Bromofle
	03/23/22			92-112	Conc: 49.6	99%		18	Toluene-d
(Continued								ample Results	Sa
by Adam Powe	03/22/22 7:11	Sampled:						CWRF Effluent 03/22/21	Sample:
								2C22092-02RE1 (Water)	
Qualifi	Analyzed	Dil	Units	MRL	MDL	Result			Analyte
							иS	nic Compounds by P&T and GC/N	/olatile Organ
				Instr: GCMS21				A 624.1	Method: EPA
Analyst: ADN			5/22 12:39	Prepared: 03/25/22 12:39			Preparation: EPA 5030B	Batch ID: W2C1791 Prepar	
	03/25/22	1	ug/l	5.0	1.6	3.8			Acetone
	03/25/22	1	ug/l	1.0	0.30	ND		ifluoromethane (Freon 12)	Dichlorodi
	03/25/22	1	ug/l	1.0	0.43	ND			Trichloroflu

Conc: 48.8

Conc: 50.3

Conc: 50.1

82-125

88-108

92-112

FINAL REPORT

Encina Wastewater Authority 6200 Avenida Encinas Carlsbad, CA 92011 **Project Number:** 2022 Annual CWRF Effluent Priority

Pollutant Scan

Reported: 05/05/2022 09:15

Project Manager: Jeff Parks

Sample Results LA Testing - EMSL Analytical, Inc. CA-ELAP #2283, Non-NELAP

	·						
Sample:	CWRF Effluent 03/21-03/22/21				Sampled:	03/22/22 7:11	oy Adam Powell
	2C22092-01 (Water)						
Analyte		Result	MRL	Units	Dil	Analyzed	Qualifier
EPA 100.2							
Method: EPA	100.2	Batch ID: 322206297	Prepared: 03/2	23/22 14:35			Analyst: _SUB
Asbestos (>	>10 um)	<1.00	1.00	MFL	1	03/31/22	
Fibers:	Area: 0.256	Confidence: 0.00-3.70					
Asbestos (0	0.5 to 10 um)	<1.00	1.00	MFL	1	03/31/22	
Fibers:	Area: 0.256	Confidence: -					

FINAL REPORT

Encina Wastewater Authority 6200 Avenida Encinas Carlsbad, CA 92011

Sample Results PACE-MN

Project Number: 2022 Annual CWRF Effluent Priority

Pollutant Scan

Reported: 05/05/2022 09:15

Project Manager: Jeff Parks

(Continued)

2C22092 Page 10 of 36

FINAL REPORT

Encina Wastewater Authority 6200 Avenida Encinas Carlsbad, CA 92011 **Project Number:** 2022 Annual CWRF Effluent Priority

Pollutant Scan

Reported: 05/05/2022 09:15

(Continued)

Project Manager: Jeff Parks

Sample Results PACE-MN

Sample:	CWRF Effluent 03/21-03/22/21 2C22092-01 (Water)				Sampled:	03/22/22 7:11 k	oy Adam Powell
Analyte		Result	MRL	Units	Dil	Analyzed	Qualifier
Dioxins and F	urans by Isotope Dilution HRGC/HRMS						
Method: SW	/8290	Batch ID: 32764	Prepared: 03/2	29/22 13:10			Analyst: SMT
1,2,3,4,6,7	7,8-HpCDD	ND	51	pg/L	1	03/31/22	
1,2,3,4,6,7	7,8-HpCDF	ND	51	pg/L	1	03/31/22	
	5,0-11p0b1	ND	51	pg/L	1	03/31/22	
1,2,3,4,7,8	3-HxCDD	ND	51	pg/L	1	03/31/22	
1,2,3,4,7,8	3-HxCDF	ND	51	pg/L	1	03/31/22	
1,2,3,6,7,8	3-HxCDD	ND	51	pg/L	1	03/31/22	
1,2,3,6,7,8	3-HxCDF	ND	51	pg/L	1	03/31/22	
1,2,3,7,8,9	9-HxCDD	ND	51	pg/L	1	03/31/22	
1,2,3,7,8,9	9-HxCDF	ND	51	pg/L	1	03/31/22	
1,2,3,7,8-	PeCDD	ND	51	pg/L	1	03/31/22	
1,2,3,7,8-	PeCDF	ND	51	pg/L	1	03/31/22	
2,3,4,6,7,8	3-HxCDF	ND	51	pg/L	1	03/31/22	
2,3,4,7,8-	PeCDF	ND	51	pg/L	1	03/31/22	
2,3,7,8-TC	CDD	ND	10	pg/L	1	03/31/22	
2,3,7,8-TC	CDF	ND	10	pg/L	1	03/31/22	
OCDD		ND	100	pg/L	1	03/31/22	
OCDF -		ND	100	pg/L	1	03/31/22	
Total HpC	DD	ND	51	pg/L	1	03/31/22	
Total HpC	DF	ND	51	pg/L	1	03/31/22	
Total HxC	DD	ND	51	pg/L	1	03/31/22	
Total HxC	DF	ND	51	pg/L	1	03/31/22	
Total PeC	DD	ND	51	pg/L	1	03/31/22	
Total PeC	DF	ND	51	pg/L	1	03/31/22	
Total TCD	D	ND	10	pg/L	1	03/31/22	
Total TCD	F	ND	10	pg/L	1	03/31/22	
Surrogate(s)							
1,2,3,4,6,	7,8-HpCDD-13C	89%	40.0-135.0			03/31/22	
1,2,3,4,6,	7,8-HpCDF-13C	82%	40.0-135.0			03/31/22	
1,2,3,4,7,	8,9-HpCDF-13C	69%	40.0-135.0			03/31/22	
1,2,3,4,7,	8-HxCDD-13C	90%	40.0-135.0			03/31/22	
1,2,3,4,7,	8-HxCDF-13C	96%	40.0-135.0			03/31/22	
1,2,3,6,7,	8-HxCDD-13C	100%	40.0-135.0			03/31/22	
1,2,3,6,7,	8-HxCDF-13C	52%	40.0-135.0			03/31/22	
1,2,3,7,8,	9-HxCDF-13C	83%	40.0-135.0			03/31/22	
	PeCDD-13C	118%	40.0-135.0			03/31/22	
	PeCDF-13C	89%	40.0-135.0			03/31/22	
	8-HxCDF-13C	84%	40.0-135.0			03/31/22	
2,3,4,7,8-	PeCDF-13C	104%	40.0-135.0			03/31/22	

FINAL REPORT

Encina Wastewater Authority 6200 Avenida Encinas Carlsbad, CA 92011 **Project Number:** 2022 Annual CWRF Effluent Priority

Pollutant Scan

Reported:

05/05/2022 09:15

Sample Results PACE-MN

(Continued)

Sample:	CWRF Effluent 03/21-03/22/21 2C22092-01 (Water)				Sampled:	03/22/22 7:11 by (Adam Powell Continued)
Analyte		Result	MRL	Units	Dil	Analyzed	Qualifier
Dioxins and Fu	rans by Isotope Dilution HRGC/HRMS (Continued)						
2,3,7,8-TC	DD-13C	88%	40.0-135.0			03/31/22	
2,3,7,8-TC	DF-13C	90%	40.0-135.0			03/31/22	
OCDD-130	·	78%	40.0-135.0			03/31/22	

Project Manager: Jeff Parks

FINAL REPORT

Encina Wastewater Authority 6200 Avenida Encinas Carlsbad, CA 92011 Project Number: 2022 Annual CWRF Effluent Priority

Pollutant Scan

Reported: 05/05/2022 09:15

Page 13 of 36

Project Manager: Jeff Parks

1	1	/		,
	L		7	(

2C22092

Quality Control Results

Dioxins and Furans by Isotope Dilution HRGC/HR	IMS									
Australia	Danulé	MDI	l luite	Spike	Source	% DEC	%REC	DDD	RPD	0!!
Analyte tch: 32764 - SW8290	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Quali
				1 02 (20 (00/04/0	_			
BLK (BLANK-97697) 1,2,3,4,6,7,8-HpCDD	ND	50	pg/L	pared: 03/29/2	22 Analyzed:	03/31/2	2			
1,2,3,4,6,7,8-HpCDF		50	pg/L							
1,2,3,4,7,8,9-HpCDF	· ND	50	pg/L							
1,2,3,4,7,8-HxCDD	ND	50	pg/L							
1,2,3,4,7,8-HxCDF	ND	50	pg/L							
1,2,3,6,7,8-HxCDD	ND	50	pg/L							
1,2,3,6,7,8-HxCDF	ND	50	pg/L							
1,2,3,7,8,9-HxCDD	ND	50	pg/L							
1,2,3,7,8,9-HxCDF	· · · · · · · · · ND	50	pg/L							
1,2,3,7,8-PeCDD	ND	50	pg/L							
1,2,3,7,8-PeCDF	ND	50	pg/L							
2,3,4,6,7,8-HxCDF	· · · · · · · · · ND	50	pg/L							
2,3,4,7,8-PeCDF	· ND	50	pg/L							
2,3,7,8-TCDD	· ND	10	pg/L							
2,3,7,8-TCDF	ND	10	pg/L							
OCDD	ND	100	pg/L							
OCDF	· ND	100	pg/L							
Total HpCDD	ND	50	pg/L							
Total HpCDF	ND	50	pg/L							
Total HxCDD	· ND	50	pg/L							
Total HxCDF	· ND	50	pg/L							
Total PeCDD	· ND	50	pg/L							
Total PeCDF	ND	50	pg/L							
Total TCDD	· ND	10	pg/L							
Total TCDF	ND	10	pg/L							
iurrogate(s)										
1,2,3,4,6,7,8-HpCDD-13C	1600		pg/L	2000		81	40.0-135.0			
1,2,3,4,6,7,8-HpCDF-13C	1600		pg/L	2000		82	40.0-135.0			
1,2,3,4,7,8,9-HpCDF-13C	1100		pg/L	2000		53	40.0-135.0			
1,2,3,4,7,8-HxCDD-13C	1700		pg/L	2000		83	40.0-135.0			
1,2,3,4,7,8-HxCDF-13C	1600		pg/L	2000		81	40.0-135.0			
1,2,3,6,7,8-HxCDD-13C	1800		pg/L	2000		92	40.0-135.0			
1,2,3,6,7,8-HxCDF-13C	900		pg/L	2000		45	40.0-135.0			
1,2,3,7,8,9-HxCDF-13C	1300		pg/L	2000		66	40.0-135.0			
1,2,3,7,8-PeCDD-13C	2000		pg/L	2000		100	40.0-135.0			
1,2,3,7,8-PeCDF-13C	1700		pg/L	2000		85	40.0-135.0			
2,3,4,6,7,8-HxCDF-13C	1500		pg/L	2000		77	40.0-135.0			
2,3,4,7,8-PeCDF-13C	1900		pg/L	2000		95	40.0-135.0			
2,3,7,8-TCDD-13C	1400		pg/L	2000		69	40.0-135.0			

FINAL REPORT

Encina Wastewater Authority 6200 Avenida Encinas Carlsbad, CA 92011 **Project Number:** 2022 Annual CWRF Effluent Priority

Pollutant Scan

Project Manager: Jeff Parks

Reported:

05/05/2022 09:15

Quality Control Results

Dioxins and Furans by Isotope Dilution HF	RGC/HRMS (Continued)									
Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualific
atch: 32764 - SW8290 (Continued)	Result	WINE	Oilles	Level	Result	JUNEC	Lilling	KI D	Lilling	Quaiiii
BLK (BLANK-97697)			Droi	pared: 03/29/2	2 Analyzod	03/31/3	12			
Surrogate(s)						03/31/2				
2,3,7,8-TCDF-13C	1500		pg/L	2000		75	40.0-135.0			
OCDD-13C	2600		pg/L	4000		66	40.0-135.0			
BS (LCS-97698)			Prej	pared: 03/29/2	2 Analyzed:	03/31/2	22			
1,2,3,4,6,7,8-HpCDD	900	50	pg/L	1000		90	70.0-130.0			
1,2,3,4,6,7,8-HpCDF	970	50	pg/L	1000		97	70.0-130.0			
1,2,3,4,7,8,9-HpCDF	910	50	pg/L	1000		91	70.0-130.0			
1,2,3,4,7,8-HxCDD		50	pg/L	1000		99	70.0-130.0			
1,2,3,4,7,8-HxCDF	860	50	pg/L	1000		86	70.0-130.0			
1,2,3,6,7,8-HxCDD	870	50	pg/L	1000		87	70.0-130.0			
1,2,3,6,7,8-HxCDF	870	50	pg/L	1000		87	70.0-130.0			
1,2,3,7,8,9-HxCDD	880	50	pg/L	1000		88	70.0-130.0			
1,2,3,7,8,9-HxCDF	920	50	pg/L	1000		92	70.0-130.0			
1,2,3,7,8-PeCDD	870	50	pg/L	1000		87	70.0-130.0			
1,2,3,7,8-PeCDF	860	50	pg/L	1000		86	70.0-130.0			
2,3,4,6,7,8-HxCDF	960	50	pg/L	1000		96	70.0-130.0			
2,3,4,7,8-PeCDF	850	50	pg/L	1000		85	70.0-130.0			
2,3,7,8-TCDD	200	10	pg/L	200		99	70.0-130.0			
2,3,7,8-TCDF	180	10	pg/L	200		92	70.0-130.0			
OCDD	2200	100	pg/L	2000		110	70.0-130.0			
OCDF	1900	100	pg/L	2000		96	70.0-130.0			
Surrogate(s)	4000						40.040.0			
1,2,3,4,6,7,8-HpCDD-13C	1600		pg/L	2000		82	40.0-135.0			
.,_,o, .,o,.,opooo	1000		pg/L	2000		78	40.0-135.0			
, , , , , , ,			pg/L	2000		59	40.0-135.0			
	1700		pg/L	2000		86	40.0-135.0			
1,2,3,4,7,8-HxCDF-13C			pg/L	2000		98	40.0-135.0			
1,2,3,6,7,8-HxCDD-13C			pg/L	2000		101	40.0-135.0			
1,2,0,0,1,011X0D1 100	930		pg/L	2000		46	40.0-135.0			
.,=,-,.,-,	1600		pg/L	2000		79	40.0-135.0			
1,2,3,7,8-PeCDD-13C	2300		pg/L	2000		113	40.0-135.0			
, , -, , -	1800		pg/L	2000		91	40.0-135.0			
2,3,4,6,7,8-HxCDF-13C	1600		pg/L	2000		81	40.0-135.0			
2,3,4,7,8-PeCDF-13C	2000		pg/L	2000		100	40.0-135.0			
2,3,7,8-TCDD-13C	1600		pg/L	2000		82	40.0-135.0			
2,3,7,8-TCDF-13C	1700		pg/L	2000		83	40.0-135.0			
OCDD-13C	2700		pg/L	4000		67	40.0-135.0			

FINAL REPORT

Encina Wastewater Authority 6200 Avenida Encinas Carlsbad, CA 92011 Project Number: 2022 Annual CWRF Effluent Priority

Pollutant Scan

Project Manager: Jeff Parks

Reported:

05/05/2022 09:15

Quality Control Results

Acid and Base/Neutral Extractables by GC/MS											
ALe		MP		11	Spike	Source	0/ 856	%REC		RPD	0 175
<u>,</u>	Result	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualif
atch: W2C1684 - EPA 625.1											
Blank (W2C1684-BLK1)	ND	0.40	1.0		pared: 03/24/	22 Analyzed	: 04/01/22	2			
1,2,4-Trichlorobenzene 1.2-Dichlorobenzene	- · ND - · ND	0.49 0.46	1.0 1.0	ug/l							
,				ug/l							
·,,-···· , ·· ,	- ND	0.30	1.0	ug/l							
,	- ND	0.42	1.0	ug/l							
1,4-Dichlorobenzene	- ND	0.48	1.0	ug/l							
2,4,6-Trichlorophenol	- ND	0.22	1.0	ug/l							
2,4-Dichlorophenol	- ND	0.26	1.0	ug/l							
2,4-Dimethylphenol	- ND	0.76	1.0	ug/l							
2,4-Dinitrophenol	- ND	1.9	10	ug/l							
2,4-Dinitrotoluene	- ND	0.46	1.0	ug/l							
2,6-Dinitrotoluene	- ND	0.27	1.0	ug/l							
2-Chloronaphthalene	- ND	0.45	1.0	ug/l							
2-Chlorophenol	- ND	0.28	1.0	ug/l							
2-Methyl-4,6-dinitrophenol	- ND	0.50	5.0	ug/l							
2-Nitrophenol	· ND	0.26	1.0	ug/l							
3,3'-Dichlorobenzidine	- ND	2.5	5.0	ug/l							
4-Bromophenyl phenyl ether	- ND	0.36	1.0	ug/l							
4-Chloro-3-methylphenol	- ND	0.23	1.0	ug/l							
4-Chlorophenyl phenyl ether	- ND	0.41	1.0	ug/l							
4-Nitrophenol	- ND	1.2	5.0	ug/l							
Acenaphthene	- ND	0.38	1.0	ug/l							
Acenaphthylene	- ND	0.35	1.0	ug/l							
Anthracene	- ND	0.41	1.0	ug/l							
Benzidine	·ND	3.2	10	ug/l							
Benzo (a) anthracene	·ND	0.19	1.0	ug/l							
Benzo (a) pyrene	·ND	0.39	1.0	ug/l							
Benzo (b) fluoranthene	- ND	0.46	1.0	ug/l							
Benzo (g,h,i) perylene	- ND	0.42	2.0	ug/l							
Benzo (k) fluoranthene	- ND	0.22	1.0	ug/l							
Bis(2-chloroethoxy)methane	- ND	0.25	1.0	ug/l							
Bis(2-chloroethyl)ether	ND	0.27	1.0	ug/l							
Bis(2-chloroisopropyl)ether	- ND	0.38	1.0	ug/l							
Bis(2-ethylhexyl)phthalate	ND	2.3	5.0	ug/l							
Butyl benzyl phthalate	ND	0.49	1.0	ug/l							
Chrysene	ND	0.19	1.0	ug/l							
Dibenzo (a,h) anthracene	- ND	0.15	2.0	ug/l							
Diethyl phthalate	- ND	0.35	1.0	ug/l							
Dimethyl phthalate	- ND	0.18	1.0	ug/l							
Di-n-butyl phthalate	- ND	0.34	1.0	ug/l							
C22092				-							Page 15 c

FINAL REPORT

Encina Wastewater Authority 6200 Avenida Encinas Carlsbad, CA 92011 Project Number: 2022 Annual CWRF Effluent Priority

Pollutant Scan

Reported: 05/05/2022 09:15

Project Manager: Jeff Parks

(Continued)

Page 16 of 36

	Quality	Control	Results
--	---------	---------	---------

				Spike	Source		%REC		RPD	
Analyte Resul	t MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifi
tch: W2C1684 - EPA 625.1 (Continued)										
Blank (W2C1684-BLK1)		4.0		pared: 03/24/2	2 Analyzed:	04/01/22				
Di-n-octyl phthalate NE		1.0	ug/l							
Fluoranthene		1.0	ug/l							
Fluorene		1.0	ug/l							
Hexachlorobenzene NE		1.0	ug/l							
Hexachlorobutadiene NE		1.0	ug/l							
Hexachlorocyclopentadiene NE		5.0	ug/l							
Hexachloroethane		1.0	ug/l							
Indeno (1,2,3-cd) pyrene		2.0	ug/l							
Isophorone NE		1.0	ug/l							
Naphthalene NE		1.0	ug/l							
Nitrobenzene		1.0	ug/l							
N-Nitrosodimethylamine NE		1.0	ug/l							
N-Nitrosodi-n-propylamine NE	0.26	1.0	ug/l							
N-Nitrosodiphenylamine NE	0.19	1.0	ug/l							
Pentachlorophenol NE	0.40	1.0	ug/l							
Phenanthrene NE	0.32	1.0	ug/l							
Phenol NE		1.0	ug/l							
Pyrene NE		1.0	ug/l							
urrogate(s) 2,4,6-Tribromophenol 29.0			ug/l	40.0		74	25-120			
2-Fluorobiphenyl 15.:			ug/l	20.0		76	22-120			
2-Fluorophenol 20.3			ug/l	40.0		51	17-120			
Nitrobenzene-d5 14.			ug/l	20.0		73	47-120			
Phenol-d5 13.			ug/l	40.0		33	12-120			
Terphenyl-d14 24.			ug/l	20.0		122	44-129			
Terprienty-u14	,		ug/i	20.0		122	44-123			
.CS (W2C1684-BS1) 1.2.4-Trichlorobenzene 17.1	0.40	1.0		pared: 03/24/2	2 Analyzed:					
11.		1.0	ug/l	20.0		85	57-130			
· -		1.0	ug/l	20.0		78 77	57-120			
1,3-Dichlorobenzene 15.4		1.0	ug/l	20.0		77	55-120			
1,4-Dichlorobenzene 16.6		1.0	ug/l	20.0		83	55-120			
2,4,6-Trichlorophenol		1.0	ug/l	20.0		88	52-129			
2,4-Dichlorophenol		1.0	ug/l	20.0		97	53-122			
2,4-Dimethylphenol		1.0	ug/l	20.0		83	42-120			
2,4-Dinitrophenol 26.7		10	ug/l	20.0		134	0.1-173			
2,4-Dinitrotoluene 21.8		1.0	ug/l	20.0		109	48-127			
2,6-Dinitrotoluene		1.0	ug/l	20.0		84	68-137			
2-Chloronaphthalene 17.9		1.0	ug/l	20.0		90	65-120			
2-Chlorophenol 17.	0.28	1.0	ug/l	20.0		85	36-120			

FINAL REPORT

Encina Wastewater Authority 6200 Avenida Encinas Carlsbad, CA 92011 Project Number: 2022 Annual CWRF Effluent Priority

Pollutant Scan

Project Manager: Jeff Parks

Reported:

05/05/2022 09:15

Quality Control Results

					Spike	Source		%REC		RPD	
Analyte	Result	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
tch: W2C1684 - EPA 625.1 (Continued)											
.CS (W2C1684-BS1)				Pre	pared: 03/24/2	22 Analyzed:	04/01/22	2			
2-Nitrophenol	19.0	0.26	1.0	ug/l	20.0	· · · · · · · · · · · · · · · · · ·	95	45-167			
3,3'-Dichlorobenzidine	13.1	2.5	5.0	ug/l	20.0		66	8-213			
4-Bromophenyl phenyl ether	19.2	0.36	1.0	ug/l	20.0		96	65-120			
4-Chloro-3-methylphenol	17.7	0.23	1.0	ug/l	20.0		89	41-128			
4-Chlorophenyl phenyl ether	17.0	0.41	1.0	ug/l	20.0		85	38-145			
4-Nitrophenol	8.59	1.2	5.0	ug/l	20.0		43	13-129			
Acenaphthene	19.1	0.38	1.0	ug/l	20.0		96	60-132			
Acenaphthylene	20.3	0.35	1.0	ug/l	20.0		101	54-126			
Anthracene	19.0	0.41	1.0	ug/l	20.0		95	43-120			
Benzo (a) anthracene	18.5	0.19	1.0	ug/l	20.0		92	42-133			
Benzo (a) pyrene	18.4	0.39	1.0	ug/l	20.0		92	32-148			
Benzo (b) fluoranthene	18.2	0.46	1.0	ug/l	20.0		91	42-140			AN-
Benzo (g,h,i) perylene	17.2	0.42	2.0	ug/l	20.0		86	0.1-195			
Benzo (k) fluoranthene	19.2	0.22	1.0	ug/l	20.0		96	25-146			AN-
Bis(2-chloroethoxy)methane	18.5	0.25	1.0	ug/l	20.0		92	49-165			
Bis(2-chloroethyl)ether	16.7	0.27	1.0	ug/l	20.0		84	43-126			
Bis(2-chloroisopropyl)ether	17.1	0.38	1.0	ug/l	20.0		85	63-139			
Bis(2-ethylhexyl)phthalate	18.9	2.3	5.0	ug/l	20.0		94	29-137			
Butyl benzyl phthalate	20.1	0.49	1.0	ug/l	20.0		100	0.1-140			
Chrysene	19.1	0.19	1.0	ug/l	20.0		95	44-140			
Dibenzo (a,h) anthracene	18.2	0.15	2.0	ug/l	20.0		91	0.1-200			
Diethyl phthalate	17.9	0.35	1.0	ug/l	20.0		89	0.1-120			
Dimethyl phthalate	16.2	0.18	1.0	ug/l	20.0		81	0.1-120			
Di-n-butyl phthalate	18.0	0.34	1.0	ug/l	20.0		90	8-120			
Di-n-octyl phthalate	20.6	0.46	1.0	ug/l	20.0		103	19-132			
Fluoranthene	18.9	0.35	1.0	ug/l	20.0		94	43-121			
Fluorene	19.2	0.35	1.0	ug/l	20.0		96	70-120			
Hexachlorobenzene	18.7	0.49	1.0	ug/l	20.0		93	8-142			
Hexachlorobutadiene	17.3	0.47	1.0	ug/l	20.0		87	38-120			
Hexachlorocyclopentadiene	10.1	0.31	5.0	ug/l	20.0		50	10-120			
Hexachloroethane	17.0	0.50	1.0	ug/l	20.0		85	55-120			
Indeno (1,2,3-cd) pyrene	18.3	0.25	2.0	ug/l	20.0		92	0.1-151			
Isophorone	16.1	0.21	1.0	ug/l	20.0		81	47-180			
Naphthalene	17.7	0.49	1.0	ug/l	20.0		89	36-120			
Nitrobenzene	18.0	0.36	1.0	ug/l	20.0		90	54-158			
N-Nitrosodimethylamine	11.1	0.50	1.0	ug/l	20.0		55	22-120			
N-Nitrosodi-n-propylamine	18.5	0.26	1.0	ug/l	20.0		93	14-198			
N-Nitrosodiphenylamine		0.19	1.0	ug/l	20.0		79	47-120			
Pentachlorophenol		0.40	1.0	ug/l	20.0		105	41-120			

FINAL REPORT

Encina Wastewater Authority 6200 Avenida Encinas Carlsbad, CA 92011 **Project Number:** 2022 Annual CWRF Effluent Priority

Pollutant Scan

Project Manager: Jeff Parks

Reported:

05/05/2022 09:15

2C22092

Quality Control Results

(Continued)

Page 18 of 36

Analyte	Result	MDL	MRL	Units	Spike Level	Source Result %REC	%REC Limits	RPD	RPD Limit	Qualifie
atch: W2C1684 - EPA 625.1 (Continued)	Result	MDL	IVIKL	Onits	Levei	Result /orec	Limits	KPD	Lillit	Qualifie
LCS (W2C1684-BS1)				Dro	nared: 03/24/2	22 Analyzed: 04/01/2	,			
Phenanthrene Phenanthrene	19.0	0.32	1.0	ug/l	20.0	95	65-120			
Phenol	7.64	0.81	1.0	ug/l	20.0	38	17-120			
Pyrene	18.9	0.25	1.0	ug/l	20.0	95	70-120			
urrogate(s) 2,4,6-Tribromophenol				ug/l	40.0	93	25-120			
2-Fluorobiphenyl				ug/l	20.0	90	22-120			
2-Fluorophenol				-	40.0	55	17-120			
Nitrobenzene-d5				ug/l	20.0	94	47-120			
Phenol-d5				ug/l	40.0	37	12-120			
				ug/l	20.0		44-129			
Terphenyl-d14	22.3			ug/l	20.0	112	44-129			
LCS Dup (W2C1684-BSD1)	40.0	0.40	4.0			22 Analyzed: 04/01/2		0	00	
1,2,4-Trichlorobenzene	16.6	0.49	1.0	ug/l	20.0	83	57-130	3	30	
1,2-Dichlorobenzene		0.46	1.0	ug/l	20.0	78	57-120	0.1	30	
1,3-Dichlorobenzene		0.42	1.0	ug/l	20.0	76	55-120	0.7	30	
1,4-Dichlorobenzene		0.48	1.0	ug/l	20.0	82	55-120	0.6	30	
2,4,6-Trichlorophenol		0.22	1.0	ug/l	20.0	91	52-129	3	30	
2,4-Dichlorophenol		0.26	1.0	ug/l	20.0	95	53-122	3	30	
2,4-Dimethylphenol		0.76	1.0	ug/l	20.0	84	42-120	2	30	
2,4-Dinitrophenol		1.9	10	ug/l	20.0	130	0.1-173	2	30	
2,4-Dinitrotoluene		0.46	1.0	ug/l	20.0	103	48-127	5	30	
2,6-Dinitrotoluene		0.27	1.0	ug/l	20.0	85	68-137	1	30	
2-Chloronaphthalene	18.0	0.45	1.0	ug/l	20.0	90	65-120	0.5	30	
2-Chlorophenol	17.1	0.28	1.0	ug/l	20.0	86	36-120	0.5	30	
2-Methyl-4,6-dinitrophenol	22.0	0.50	5.0	ug/l	20.0	110	53-130	3	30	
2-Nitrophenol	18.5	0.26	1.0	ug/l	20.0	93	45-167	3	30	
3,3'-Dichlorobenzidine	14.5	2.5	5.0	ug/l	20.0	72	8-213	10	30	
4-Bromophenyl phenyl ether	18.7	0.36	1.0	ug/l	20.0	93	65-120	3	30	
4-Chloro-3-methylphenol	18.2	0.23	1.0	ug/l	20.0	91	41-128	2	30	
4-Chlorophenyl phenyl ether	15.1	0.41	1.0	ug/l	20.0	75	38-145	12	30	
4-Nitrophenol	8.27	1.2	5.0	ug/l	20.0	41	13-129	4	30	
Acenaphthene	18.7	0.38	1.0	ug/l	20.0	94	60-132	2	30	
Acenaphthylene	21.1	0.35	1.0	ug/l	20.0	106	54-126	4	30	
Anthracene	19.0	0.41	1.0	ug/l	20.0	95	43-120	0.3	30	
Benzo (a) anthracene	19.6	0.19	1.0	ug/l	20.0	98	42-133	6	30	
Benzo (a) pyrene	18.7	0.39	1.0	ug/l	20.0	94	32-148	2	30	
Benzo (b) fluoranthene	19.3	0.46	1.0	ug/l	20.0	97	42-140	6	30	AN-
Benzo (g,h,i) perylene	17.9	0.42	2.0	ug/l	20.0	90	0.1-195	4	30	
Benzo (k) fluoranthene	19.2	0.22	1.0	ug/l	20.0	96	25-146	0.06	30	AN-
Bis(2-chloroethoxy)methane	. 18 2	0.25	1.0	ug/l	20.0	91	49-165	1	30	

FINAL REPORT

Encina Wastewater Authority 6200 Avenida Encinas Carlsbad, CA 92011

Quality Control Results

Project Number: 2022 Annual CWRF Effluent Priority

Pollutant Scan

Reported: 05/05/2022 09:15

(Continued)

Project Manager: Jeff Parks

					Spike	Source		%REC		RPD	
Analyte	Result	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifi
atch: W2C1684 - EPA 625.1 (Continued)											
LCS Dup (W2C1684-BSD1)				Pre	pared: 03/24/2	22 Analyzed:	04/01/2	2			
Bis(2-chloroethyl)ether	17.0	0.27	1.0	ug/l	20.0	•	85	43-126	1	30	
Bis(2-chloroisopropyl)ether	17.9	0.38	1.0	ug/l	20.0		90	63-139	5	30	
Bis(2-ethylhexyl)phthalate	19.3	2.3	5.0	ug/l	20.0		96	29-137	2	30	
Butyl benzyl phthalate	21.1	0.49	1.0	ug/l	20.0		105	0.1-140	5	30	
Chrysene	18.9	0.19	1.0	ug/l	20.0		94	44-140	1	30	
Dibenzo (a,h) anthracene	18.8	0.15	2.0	ug/l	20.0		94	0.1-200	3	30	
Diethyl phthalate	17.7	0.35	1.0	ug/l	20.0		89	0.1-120	0.9	30	
Dimethyl phthalate	10.9	0.18	1.0	ug/l	20.0		54	0.1-120	39	30	Q-1
Di-n-butyl phthalate	18.3	0.34	1.0	ug/l	20.0		92	8-120	2	30	
Di-n-octyl phthalate	19.9	0.46	1.0	ug/l	20.0		100	19-132	3	30	
Fluoranthene	19.0	0.35	1.0	ug/l	20.0		95	43-121	0.7	30	
Fluorene	18.8	0.35	1.0	ug/l	20.0		94	70-120	2	30	
Hexachlorobenzene	18.3	0.49	1.0	ug/l	20.0		92	8-142	2	30	
Hexachlorobutadiene	17.6	0.47	1.0	ug/l	20.0		88	38-120	1	30	
Hexachlorocyclopentadiene	10.3	0.31	5.0	ug/l	20.0		52	10-120	2	30	
Hexachloroethane	16.5	0.50	1.0	ug/l	20.0		82	55-120	3	30	
Indeno (1,2,3-cd) pyrene	19.1	0.25	2.0	ug/l	20.0		96	0.1-151	4	30	
Isophorone	15.6	0.21	1.0	ug/l	20.0		78	47-180	4	30	
Naphthalene	18.0	0.49	1.0	ug/l	20.0		90	36-120	2	30	
Nitrobenzene	17.9	0.36	1.0	ug/l	20.0		89	54-158	0.9	30	
N-Nitrosodimethylamine	11.8	0.50	1.0	ug/l	20.0		59	22-120	7	30	
N-Nitrosodi-n-propylamine	18.0	0.26	1.0	ug/l	20.0		90	14-198	3	30	
N-Nitrosodiphenylamine	15.9	0.19	1.0	ug/l	20.0		79	47-120	0.6	30	
Pentachlorophenol	19.5	0.40	1.0	ug/l	20.0		97	41-120	8	30	
Phenanthrene	19.4	0.32	1.0	ug/l	20.0		97	65-120	2	30	
Phenol	7.95	0.81	1.0	ug/l	20.0		40	17-120	4	30	
Pyrene	19.3	0.25	1.0	ug/l	20.0		96	70-120	2	30	
Surrogate(s)											
2,4,6-Tribromophenol				ug/l	40.0		88	25-120			
2-Fluorobiphenyl				ug/l	20.0		88	22-120			
2-Fluorophenol				ug/l	40.0		56	17-120			
Nitrobenzene-d5				ug/l	20.0		88	47-120			
Phenol-d5	14.6			ug/l	40.0		37	12-120			

FINAL REPORT

Encina Wastewater Authority 6200 Avenida Encinas Carlsbad, CA 92011

2C22092

Project Number: 2022 Annual CWRF Effluent Priority

Pollutant Scan

Reported: 05/05/2022 09:15

Project Manager: Jeff Parks

(Continued)

Page 20 of 36

Chlorinated Pesticides and/or PCBs by	GC/ECD										
					Spike	Source		%REC		RPD	
Analyte	Result	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
atch: W2C1576 - EPA 608.3											
Blank (W2C1576-BLK1)				Pre	pared: 03/23/2	2 Analyzed: (03/31/22				
4,4'-DDD		0.00070	0.050	ug/l							
4,4'-DDE		0.00070	0.050	ug/l							
4,4´-DDT		0.0011	0.010	ug/l							
Aldrin	ND	0.0010	0.0050	ug/l							
alpha-BHC	ND	0.0011	0.010	ug/l							
Aroclor 1016	ND	0.029	0.50	ug/l							
Aroclor 1221	ND	0.060	0.50	ug/l							
Aroclor 1232		0.10	0.50	ug/l							
Aroclor 1242		0.070	0.50	ug/l							
Aroclor 1248		0.060	0.50	ug/l							
Aroclor 1254		0.040	0.50	ug/l							
Aroclor 1260		0.055	0.50	ug/l							
beta-BHC		0.0015	0.0050	ug/l							
Chlordane (tech)		0.043	0.10	ug/l							
delta-BHC		0.0019	0.0050	ug/l							
Dieldrin		0.00080	0.010	ug/l							
Endosulfan I		0.00090	0.020	ug/l							
Endosulfan II		0.00070	0.010	ug/l							
Endosulfan sulfate		0.0013	0.050	ug/l							
Endrin		0.0017	0.010	ug/l							
Endrin aldehyde	ND	0.0019	0.010	ug/l							
gamma-BHC (Lindane)	ND	0.00040	0.020	ug/l							
Heptachlor		0.00060	0.010	ug/l							
Heptachlor epoxide		0.00040	0.010	ug/l							
Mirex	ND	0.0012	0.010	ug/l							
Toxaphene	ND	0.085	0.50	ug/l							
Surrogate(s)											
Decachlorobiphenyl	0.104			ug/l	0.100		104	33-133			
Tetrachloro-meta-xylene	0.0736			ug/l	0.100		74	32-130			
LCS (W2C1576-BS1)				Pre	pared: 03/23/2	2 Analyzed: (03/31/22				
4,4´-DDD	0.0989	0.00070	0.050	ug/l	0.100		99	48-130			
4,4´-DDE	0.0925	0.00070	0.050	ug/l	0.100		93	54-130			
4,4'-DDT	0.107	0.0011	0.010	ug/l	0.100		107	46-137			
Aldrin	0.0800	0.0010	0.0050	ug/l	0.100		80	54-130			
alpha-BHC	0.0930	0.0011	0.010	ug/l	0.100		93	49-130			
beta-BHC	0.0958	0.0015	0.0050	ug/l	0.100		96	39-130			
delta-BHC	0.0789	0.0019	0.0050	ug/l	0.100		79	51-130			
Dieldrin		0.00080	0.010	ug/l	0.100		88	58-130			
Endosulfan I		0.00090	0.020	ug/l	0.100		91	57-141			

FINAL REPORT

Encina Wastewater Authority 6200 Avenida Encinas Carlsbad, CA 92011 Project Number: 2022 Annual CWRF Effluent Priority

Pollutant Scan

Reported: 05/05/2022 09:15

Project Manager: Jeff Parks

Quality Control Results

					Spike	Source		%REC		RPD	
Analyte	Result	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifi
atch: W2C1576 - EPA 608.3 (Continued)											
LCS (W2C1576-BS1)				Pre	pared: 03/23/2	2 Analyzed:	03/31/22	2			
Endosulfan II	0.0995	0.00070	0.010	ug/l	0.100		100	22-171			
Endosulfan sulfate	0.107	0.0013	0.050	ug/l	0.100		107	38-132			
Endrin	0.109	0.0017	0.010	ug/l	0.100		109	51-130			
Endrin aldehyde	0.0722	0.0019	0.010	ug/l	0.100		72	18-130			
gamma-BHC (Lindane)	0.0905	0.00040	0.020	ug/l	0.100		91	43-130			
Heptachlor	0.0928	0.00060	0.010	ug/l	0.100		93	43-130			
Heptachlor epoxide	0.0958	0.00040	0.010	ug/l	0.100		96	57-132			
Surrogate(s) Decachlorobiphenyl	0.106			ug/l	0.100		106	33-133			
Tetrachloro-meta-xylene				ug/l	0.100		78	32-130			
	0.0770			_							
LCS Dup (W2C1576-BSD1) 4,4'-DDD	0.0935	0.00070	0.050	Pre ug/l	pared: 03/23/2 0.100	2 Analyzed:	03/31/2 2	2 48-130	6	30	
4,4'-DDE		0.00070	0.050	ug/l	0.100		75	54-130	20	30	
4.4'-DDT		0.00010	0.010	ug/l	0.100		104	46-137	2	30	
Aldrin		0.0011	0.0050	ug/l	0.100		75	54-130	7	30	
alpha-BHC	0.07.10	0.0011	0.010	ug/l	0.100		79	49-130	16	30	
beta-BHC		0.0011	0.0050	ug/l	0.100		88	39-130	9	30	
delta-BHC	0.00	0.0019	0.0050	ug/l	0.100		73	51-130	7	30	
Dieldrin	0.07.00	0.00080	0.010	ug/l	0.100		73	58-130	18	30	
Endosulfan I		0.00090	0.020	ug/l	0.100		75	57-141	19	30	
Endosulfan II		0.00070	0.010	ug/l	0.100		95	22-171	5	30	
Endosulfan sulfate		0.0013	0.050	ug/l	0.100		101	38-132	5	30	
Endrin		0.0017	0.010	ug/l	0.100		95	51-130	13	30	
Endrin aldehyde		0.0019	0.010	ug/l	0.100		81	18-130	11	30	
gamma-BHC (Lindane)		0.00040	0.020	ug/l	0.100		84	43-130	8	30	
Heptachlor		0.00040	0.020	ug/l	0.100		85	43-130	8	30	
Heptachlor epoxide			0.010	ug/l	0.100		84	57-132	13	30	
Surrogate(s)		0.00040	0.010	ug/i	0.100			01-102			
	0.100			ug/l	0.100		100	33-133			
Tetrachloro-meta-xylene	0.0672			ug/l	0.100		67	32-130			

FINAL REPORT

Encina Wastewater Authority 6200 Avenida Encinas Carlsbad, CA 92011 **Project Number:** 2022 Annual CWRF Effluent Priority

Pollutant Scan

Reported: 05/05/2022 09:15

Project Manager: Jeff Parks

|--|

2C22092

Quality Control Results

(Continued)

Page 22 of 36

02 ee: 2 00 ult	MDL 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.	MRL 5.0 5.0 5.0 5.0 6.0 5.0 0.050 0.050	ug/l Pre ug/l Pre ug/l Pre ug/l Pre ug/l	Spike Level spared: 03/24/2: 100 spared: 03/24/2: 200 Spike Level spared: 03/22/2: 1.00 spared: 03/22/2: 1.00	2 Analyzed: ND 2 Analyzed: ND 3 Analyzed: ND 4 Analyzed: 2 Analyzed: 2 Analyzed:	303/26/22 99 303/26/22 101 303/26/22 100 %REC 303/24/22 96	90-110 90-110 90-110 %REC Limits	RPD 1	20 (Co	Qualifier Ontinued)
.2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .	3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8	5.0 5.0 5.0 5.0 0.050	Pre ug/l	epared: 03/24/2: 100 epared: 03/24/2: 200 epared: 03/24/2: 200 Spike Level epared: 03/22/2: 1.00 epared: 03/22/2:	2 Analyzed: 2 Analyzed: ND 2 Analyzed: ND 3 Source Result 4 Analyzed: 2 Analyzed: 2 Analyzed:	: 03/26/22 99 : 03/26/22 101 : 03/26/22 100 %REC : 03/24/22 96	90-110 90-110 90-110 %REC Limits	1	20 (Co	ontinued
1.2 re: 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3.8 CC22031-02 3.8 CC22031-02 3.8 MDL 0.017 0.017 CC02126-01 0.017	5.0 5.0 5.0 MRL 0.050	ug/l Pre	spared: 03/24/2: 100 spared: 03/24/2: 200 spared: 03/24/2: 200 Spike Level spared: 03/22/2: 1.00 spared: 03/22/2:	2 Analyzed: ND 2 Analyzed: ND 3 Analyzed: ND 4 Analyzed: 2 Analyzed: 2 Analyzed: 2 Analyzed:	303/26/22 99 303/26/22 101 303/26/22 100 %REC 303/24/22 96	90-110 90-110 90-110 %REC Limits		(Co	
1.2 re: 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3.8 CC22031-02 3.8 CC22031-02 3.8 MDL 0.017 0.017 CC02126-01 0.017	5.0 5.0 5.0 MRL 0.050	ug/l Pre	spared: 03/24/2: 100 spared: 03/24/2: 200 spared: 03/24/2: 200 Spike Level spared: 03/22/2: 1.00 spared: 03/22/2:	2 Analyzed: ND 2 Analyzed: ND 3 Analyzed: ND 4 Analyzed: 2 Analyzed: 2 Analyzed: 2 Analyzed:	303/26/22 99 303/26/22 101 303/26/22 100 %REC 303/24/22 96	90-110 90-110 90-110 %REC Limits		(Co	
ee: 2 2 2 2 2 2 3 3 4 4 4 4 5 7 6 7 6 7 7 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	2C22031-02 3.8 2C22031-02 3.8 MDL 0.017 0.017	5.0 5.0 MRL 0.050	ug/l Pre ug/l Units Pre ug/l Pre ug/l Pre ug/l	100 epared: 03/24/2: 200 epared: 03/24/2: 200 Spike Level epared: 03/22/2: 1.00 epared: 03/22/2:	2 Analyzed: ND 2 Analyzed: ND Source Result 2 Analyzed: 2 Analyzed:	99 3/26/22 101 3/26/22 100 **REC 3/24/22 96 3/24/22	90-110 2 90-110 2 90-110 %REC Limits 2 85-115		(Co	
ee: 2 2 2 2 2 2 3 3 4 4 4 4 5 7 6 7 6 7 7 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	2C22031-02 3.8 2C22031-02 3.8 MDL 0.017 0.017	5.0 5.0 MRL 0.050	ug/l Pre ug/l Units Pre ug/l Pre ug/l Pre ug/l	100 epared: 03/24/2: 200 epared: 03/24/2: 200 Spike Level epared: 03/22/2: 1.00 epared: 03/22/2:	2 Analyzed: ND 2 Analyzed: ND Source Result 2 Analyzed: 2 Analyzed:	99 3/26/22 101 3/26/22 100 **REC 3/24/22 96 3/24/22	90-110 2 90-110 2 90-110 %REC Limits 2 85-115		(Co	
D2 re: 2 200 re:	3.8 CC22031-02 3.8 MDL 0.017 0.017 CC02126-01 0.017	5.0 MRL 0.050 0.050	ug/l Pre ug/l Units Pre ug/l Pre ug/l Pre	200 epared: 03/24/2: 200 Spike Level epared: 03/22/2: 1.00 epared: 03/22/2:	ND 2 Analyzed: ND Source Result 2 Analyzed: 2 Analyzed:	101 : 03/26/22 100 %REC : 03/24/22 96 : 03/24/22	90-110 2 90-110 %REC Limits 2 85-115		(Co	
ult ID 57 .e: 2	MDL 0.017 0.017 0.017 0.017	5.0 MRL 0.050 0.050	Units Preug/I Preug/I Preug/I	Spike Level 200 Spike 100 Spike 200 Spike 200 Spike 200 Spared: 03/22/2: 200 200 200 200 200 200 200	2 Analyzed: ND Source Result 2 Analyzed: 2 Analyzed:	%REC : 03/24/22 : 03/24/22 96 : 03/24/22	90-110 %REC Limits 2 85-115		(Co	
ult ID 57 ee: 2	MDL 0.017 0.017 202126-01 0.017	MRL 0.050 0.050	Units Pre ug/l Pre ug/l Pre	Spike Level epared: 03/22/2: 1.00 epared: 03/22/2:	Source Result 2 Analyzed: 2 Analyzed:	%REC: 03/24/22: 03/24/22: 96: 03/24/22	90-110 %REC Limits 2 85-115		(Co	
ult ID 57 ee: 2	0.017 0.017 0.017 2002126-01 0.017	MRL 0.050 0.050	Units Pre ug/l Pre ug/l	Spike Level epared: 03/22/2: 2.pared: 03/22/2: 1.00 epared: 03/22/2:	Source Result 2 Analyzed: 2 Analyzed: 2 Analyzed:	%REC : 03/24/22 : 03/24/22 96	%REC Limits		(Co	
57 ee: 2	0.017 0.017 2.002126-01 0.017	0.050	Pre ug/l Pre ug/l	Level 03/22/2: epared: 03/22/2: 1.00 epared: 03/22/2:	Result 2 Analyzed: 2 Analyzed: 2 Analyzed:	: 03/24/2 2 : 03/24/2 2 96 : 03/24/2 2	Limits 2 2 2 85-115	RPD	RPD	
57 ee: 2	0.017 0.017 2.002126-01 0.017	0.050	Pre ug/l Pre ug/l	Level 03/22/2: epared: 03/22/2: 1.00 epared: 03/22/2:	Result 2 Analyzed: 2 Analyzed: 2 Analyzed:	: 03/24/2 2 : 03/24/2 2 96 : 03/24/2 2	Limits 2 2 2 85-115	RPD		Qualifie
57 ee: 2	0.017 0.017 2.002126-01 0.017	0.050	Pre ug/l Pre ug/l	Level 03/22/2: epared: 03/22/2: 1.00 epared: 03/22/2:	Result 2 Analyzed: 2 Analyzed: 2 Analyzed:	: 03/24/2 2 : 03/24/2 2 96 : 03/24/2 2	Limits 2 2 2 85-115	RPD		Qualifie
57 ee: 2	0.017 0.017 2.002126-01 0.017	0.050	Pre ug/l Pre ug/l	epared: 03/22/2: epared: 03/22/2: 1.00 epared: 03/22/2:	2 Analyzed: 2 Analyzed: 2 Analyzed:	: 03/24/2 2 : 03/24/2 2 96 : 03/24/2 2	2 85-115	RPD	Limit	Qualifie
57 :e: 2 00 :e: 2	0.017 2 C02126-01 0.017	0.050	ug/l Pre ug/l Pre	2pared: 03/22/2 1.00 2pared: 03/22/2	2 Analyzed: 2 Analyzed:	: 03/24/2 2 96 : 03/24/2 2	2 85-115			
57 :e: 2 00 :e: 2	0.017 2 C02126-01 0.017	0.050	ug/l Pre ug/l Pre	2pared: 03/22/2 1.00 2pared: 03/22/2	2 Analyzed: 2 Analyzed:	: 03/24/2 2 96 : 03/24/2 2	2 85-115			
e: 2 00 e: 2	2C02126-01 0.017		ug/l Pre	1.00 epared: 03/22/2	2 Analyzed:	96 : 03/24/2 2	85-115			
e: 2 00 e: 2	2C02126-01 0.017		Pre	epared: 03/22/2	-	: 03/24/22				
00 :e: 2	0.017	0.050		-	-		2			
e: 2		0.050	ug/l	1.00	ND					
	C02126-06				ND	100	70-130			
77			Pre	pared: 03/22/2	-					
	0.017	0.050	ug/l	1.00	ND	98	70-130			
	C02126-01			pared: 03/22/2	-					
31	0.017	0.050	ug/l	1.00	ND	98	70-130	2	20	
	C02126-06	0.050		epared: 03/22/2	-				00	
46	0.017	0.050	ug/l	1.00	ND	95	70-130	3	20	
_				pared: 03/23/2	2 Analyzed:	: 04/06/22	2			
ID	0.00020	0.0020	mg/l							
				•	2 Analyzed:					
			_							Q-08
96	0.00020	0.0020	mg/l	0.200		98	85-115			
		0.050		•	-					MO 04
			_							MS-01
10	0.00020	0.0020	ing/i	0.200	0.0156	100	10-130			
		0.050		•	-			E	30	MS-01
	0.041	0.000	mg/i	0.200	טא	ısb	10-130	5	30	IVIS-UT
	91 16	0.00020 64 0.041 96 0.00020 ce: 2C22092-01 91 0.041 16 0.00020 ce: 2C22092-01 77 0.041	0.0020 0.0020 64 0.041 0.050 96 0.00020 0.0020 ce: 2C22092-01 91 0.041 0.050 16 0.00020 0.0020 ce: 2C22092-01 77 0.041 0.050	ND 0.041 0.050 mg/l ND 0.00020 0.0020 mg/l Pre 64 0.041 0.050 mg/l 96 0.00020 0.0020 mg/l ce: 2C22092-01 pre 91 0.041 0.050 mg/l 16 0.00020 0.0020 mg/l ce: 2C22092-01 Pre	ND 0.041 0.050 mg/l ND 0.00020 0.0020 mg/l Prepared: 03/23/2. 64 0.041 0.050 mg/l 0.200 96 0.00020 0.0020 mg/l 0.200 ce: 2C22092-01 Prepared: 03/23/2. 16 0.00020 0.0020 mg/l 0.200 16 0.00020 0.0020 mg/l 0.200 ce: 2C22092-01 Prepared: 03/23/2.	ND 0.041 0.050 mg/l	ND 0.041 0.050 mg/l	Prepared: 03/23/22 Analyzed: 04/06/22 64 0.041 0.050 mg/l 0.200 132 85-115 66 0.00020 0.0020 mg/l 0.200 98 85-115 67 0.041 0.050 mg/l 0.200 ND 145 70-130 68 0.00020 0.0020 mg/l 0.200 ND 145 70-130 69 0.00020 0.0020 mg/l 0.200 0.0156 100 70-130 68 2C22092-01 Prepared: 03/23/22 Analyzed: 04/06/22 69 0.00020 0.0020 mg/l 0.200 0.0156 100 70-130 68 2C22092-01 Prepared: 03/23/22 Analyzed: 04/06/22	ND 0.041 0.050 mg/l	ND 0.041 0.050 mg/l

FINAL REPORT

Encina Wastewater Authority 6200 Avenida Encinas Carlsbad, CA 92011

Quality Control Results

Project Number: 2022 Annual CWRF Effluent Priority

Pollutant Scan

Reported: 05/05/2022 09:15

Project Manager: Jeff Parks

/ N/IN/												
Perchlorate by EPA 314.0												
					Spike	Source		%REC		RPD		
Analyte	Result	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier	
Batch: W2C1771 - EPA 314.0												
Blank (W2C1771-BLK1)					Prepared & Analyzed: 03/25/22							
Perchlorate	ND	0.39	2.0	ug/l								
LCS (W2C1771-BS1)					Prepared & Analyzed: 03/25/22							
Perchlorate	8.52	0.39	2.0	ug/l	10.0	•	85	85-115				
Matrix Spike (W2C1771-MS1)	Source: 2C14010-01				Prepared & Analyzed: 03/25/22							
Perchlorate	8.60	0.39	2.0	ug/l	10.0	ND	86	80-120				
Matrix Spike Dup (W2C1771-MSD1)	Source: 2C14010-01				Prepared & A	nalyzed: 03/2	25/22					
Perchlorate	9.53	0.39	2.0	ug/l	10.0	ND	95	80-120	10	15		

FINAL REPORT

Encina Wastewater Authority 6200 Avenida Encinas Carlsbad, CA 92011 Project Number: 2022 Annual CWRF Effluent Priority

Pollutant Scan

Project Manager: Jeff Parks

Reported:

05/05/2022 09:15

2C22092

Quality Control Results

(Continued)

Page 24 of 36

/olatile Organic Compounds by P&T and GC/MS											
					Spike	Source		%REC		RPD	
Analyte	Result	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
tch: W2C1574 - EPA 624.1											
Blank (W2C1574-BLK1) 1,1,1-Trichloroethane	ND	0.31	1.0	ug/l	Prepared & A	nalyzed: 03/	23/22				
1,1,2,2-Tetrachloroethane		0.38	1.0	ug/l							
1,1,2-Trichloroethane		0.42	1.0	ug/l							
1,1-Dichloroethane		0.32	1.0	ug/l							
1,1-Dichloroethene		0.32	1.0	ug/l							
1,2-Dichloroethane		0.54	1.0	ug/l							
1,2-Dichloropropane		0.42	1.0	ug/l							
2-Butanone		2.0	5.0	ug/l							
2-Chloroethyl vinyl ether		0.19	1.0	ug/l							
2-Hexanone		0.46	5.0	ug/l							
4-Methyl-2-pentanone		0.59	5.0	ug/l							
Acetone Acetone		1.6	5.0	_							
Acrolein		1.2	5.0	ug/l							
7.0.0.0			2.0	ug/l							
,		0.63		ug/l							
		0.47	1.0	ug/l							
		0.44	1.0	ug/l							
		0.27	1.0	ug/l							
		0.50	1.0	ug/l							
Carbon Disulfide		0.33	1.0	ug/l							
Carbon tetrachloride		0.28	1.0	ug/l							
Chlorotter		0.35	1.0	ug/l							
Chloroethane		0.38	1.0	ug/l							
Chloroform		0.29	1.0	ug/l							
Chloromethane		0.29	1.0	ug/l							
cis-1,3-Dichloropropene		0.36	1.0	ug/l							
Dibromochloromethane		0.35	1.0	ug/l							
Dichlorodifluoromethane (Freon 12)		0.30	1.0	ug/l							
Ethylbenzene	ND	0.41	1.0	ug/l							
m-Dichlorobenzene		0.39	1.0	ug/l							
Methyl tert-butyl ether (MTBE)		0.40	1.0	ug/l							
Methylene chloride		0.39	1.0	ug/l							
o-Dichlorobenzene		0.35	1.0	ug/l							
p-Dichlorobenzene		0.42	1.0	ug/l							
Tetrachloroethene		0.34	1.0	ug/l							
Toluene	· ND	0.36	1.0	ug/l							
trans-1,2-Dichloroethene	ND	0.27	1.0	ug/l							
trans-1,3-Dichloropropene	ND	0.33	1.0	ug/l							
Trichloroethene	ND	0.34	1.0	ug/l							

FINAL REPORT

Encina Wastewater Authority 6200 Avenida Encinas Carlsbad, CA 92011 Project Number: 2022 Annual CWRF Effluent Priority

Pollutant Scan

Reported: 05/05/2022 09:15

Project Manager: Jeff Parks

Qu

Quality Control Results

(Continued)

Volatile Organic Compounds by P&T and GC/MS (Contine	ued)									
					Spike	Source	%REC		RPD	
Analyte R Batch: W2C1574 - EPA 624.1 (Continued)	lesult	MDL	MRL	Units	Level	Result %REC	Limits	RPD	Limit	Qualifi
Blank (W2C1574-BLK1)					Prenared & A	nalyzed: 03/23/22				
Vinyl chloride	ND	0.31	1.0	ug/l	riepaieu & A					
Surrogate(s)										
,	48.8			ug/l	50.0	98	82-125			
	51.6			ug/l	50.0	103	88-108			
Toluene-d8	50.4			ug/l	50.0	101	92-112			
LCS (W2C1574-BS1)					Prepared & A	nalyzed: 03/23/22				
1,1,1-Trichloroethane	47.0	0.31	1.0	ug/l	50.0	94	52-162			
1,1,2,2-Tetrachloroethane	42.3	0.38	1.0	ug/l	50.0	85	46-157			
1,1,2-Trichloroethane	49.5	0.42	1.0	ug/l	50.0	99	52-150			
1,1-Dichloroethane	44.3	0.32	1.0	ug/l	50.0	89	59-155			
1,1-Dichloroethene	45.6	0.32	1.0	ug/l	50.0	91	0.1-234			
1,2-Dichloroethane	43.3	0.54	1.0	ug/l	50.0	87	49-155			
1,2-Dichloropropane	47.9	0.42	1.0	ug/l	50.0	96	0.1-210			
2-Butanone	39.3	2.0	5.0	ug/l	50.0	79	67-136			
2-Chloroethyl vinyl ether	46.5	0.19	1.0	ug/l	50.0	93	0.1-305			
2-Hexanone	52.6	0.46	5.0	ug/l	50.0	105	76-133			
4-Methyl-2-pentanone	48.8	0.59	5.0	ug/l	50.0	98	74-132			
Acetone	473	1.6	5.0	ug/l	500	95	60-147			
Acrolein	89.2	1.2	5.0	ug/l	50.0	178	49-152			Q-
Acrylonitrile	42.8	0.63	2.0	ug/l	50.0	86	74-127			
Benzene	47.3	0.47	1.0	ug/l	50.0	95	37-151			
Bromodichloromethane	52.1	0.44	1.0	ug/l	50.0	104	35-155			
Bromoform	53.0	0.27	1.0	ug/l	50.0	106	45-169			
Bromomethane	44.6	0.50	1.0	ug/l	50.0	89	0.1-242			
Carbon Disulfide	50.9	0.33	1.0	ug/l	50.0	102	79-118			
Carbon tetrachloride	50.3	0.28	1.0	ug/l	50.0	101	70-140			
Chlorobenzene	45.7	0.35	1.0	ug/l	50.0	91	37-160			
Chloroethane	42.8	0.38	1.0	ug/l	50.0	86	14-230			
Chloroform	46.1	0.29	1.0	ug/l	50.0	92	51-138			
Chloromethane	44.6	0.29	1.0	ug/l	50.0	89	0.1-273			
cis-1,2-Dichloroethene	42.6	0.38	1.0	ug/l	50.0	85	85-121			
cis-1,3-Dichloropropene	51.3	0.36	1.0	ug/l	50.0	103	0.1-227			
Dibromochloromethane	58.3	0.35	1.0	ug/l	50.0	117	53-149			
Dichlorodifluoromethane (Freon 12)	42.4	0.30	1.0	ug/l	50.0	85	67-126			
Ethylbenzene	46.3	0.41	1.0	ug/l	50.0	93	37-162			
m,p-Xylene	46.5	0.29	1.0	ug/l	50.0	93	81-121			
m-Dichlorobenzene	49.0	0.39	1.0	ug/l	50.0	98	59-156			
Methyl tert-butyl ether (MTBE)	184	0.40	1.0	ug/l	200	92	80-128			
Methylene chloride	43.6	0.39	1.0	ug/l	50.0	87	0.1-221			

FINAL REPORT

Encina Wastewater Authority 6200 Avenida Encinas Carlsbad, CA 92011 Project Number: 2022 Annual CWRF Effluent Priority

Pollutant Scan

Reported: 05/05/2022 09:15

Project Manager: Jeff Parks

2C22092

Quality Control Results

(Continued)

Page 26 of 36

Quality Control Results										
olatile Organic Compounds by P&T and GC/MS (Continu	ıed)									
					Spike	Source	%REC		RPD	
Analyte Re	esult	MDL	MRL	Units	Level	Result %REC	Limits	RPD	Limit	Qualif
tch: W2C1574 - EPA 624.1 (Continued)										
CS (W2C1574-BS1)	40.0	0.05	4.0		•	nalyzed: 03/23/22	10.100			
	42.3	0.35	1.0	ug/l	50.0	85	18-190			
•	47.0	0.29	1.0	ug/l	50.0	94	84-121			
p-Dichlorobenzene		0.42	1.0	ug/l	50.0	84	18-190			
Tert-butyl alcohol		2.1	5.0	ug/l	200	86	53-144			
	47.8	0.34	1.0	ug/l	50.0	96	64-148			
	48.4	0.36	1.0	ug/l	50.0	97	47-150			
,	43.5	0.27	1.0	ug/l	50.0	87	54-156			
, , , , , , , , , , , , , , , , , , , ,	52.5	0.33	1.0	ug/l	50.0	105	17-183			
Trichloroethene	46.0	0.34	1.0	ug/l	50.0	92	71-157			
	46.6	0.43	1.0	ug/l	50.0	93	17-181			
,	14.6	0.31	1.0	ug/l	50.0	89	0.1-251			
urrogate(s) 1,2-Dichloroethane-d4	47.6			ug/l	50.0	95	82-125			
,	50.4			ug/l	50.0	101	88-108			
	52.0			ug/l	50.0	104	92-112			
				J	D 1 0. A					
CS Dup (W2C1574-BSD1) 1,1,1-Trichloroethane 4	48.8	0.31	1.0	ug/l	50.0	nalyzed: 03/23/22 98	52-162	4	25	
	45.8	0.38	1.0	ug/l	50.0	92	46-157	8	25	
	52.5	0.42	1.0	ug/l	50.0	105	52-150	6	25	
	46.8	0.32	1.0	ug/l	50.0	94	59-155	6	25	
	46.8	0.32	1.0	ug/l	50.0	94	0.1-234	3	25	
•	45.4	0.54	1.0	ug/l	50.0	91	49-155	5	25	
	19.4	0.42	1.0	ug/l	50.0	99	0.1-210	3	25	
	42.5	2.0	5.0	ug/l	50.0	85	67-136	8	25	
	48.9	0.19	1.0	ug/l	50.0	98	0.1-305	5	25	
	57.0	0.46	5.0	ug/l	50.0	114	76-133	8	25	
	52.5	0.59	5.0	ug/l	50.0	105	74-132	7	25	
	503	1.6	5.0	ug/l	500	101	60-147	6	25	
	98.1	1.2	5.0	ug/l	50.0	196	49-152	9	25	C
	46.1	0.63	2.0	ug/l	50.0	92	74-127	7	25	
,	48.0	0.47	1.0	ug/l	50.0	96	37-151	2	25	
	53.6	0.44	1.0	ug/l	50.0	107	35-155	3	25	
	55.4	0.44	1.0	ug/l	50.0	111	45-169	5	25	
	46.5	0.50	1.0	ug/l	50.0	93	0.1-242	4	25	
	÷0.5 51.6	0.33	1.0	ug/l	50.0	103	79-118	1	25	
	53.0	0.33	1.0	ug/l	50.0	106	79-110	5	25	
	33.0 46.8	0.26	1.0	· ·	50.0	94	37-160	2	25 25	
	+6.6 44.1	0.38		ug/l			14-230	3	25 25	
Chloroethane	+++ . 1	0.30	1.0	ug/l	50.0	88	14-230	3	20	

FINAL REPORT

Encina Wastewater Authority 6200 Avenida Encinas Carlsbad, CA 92011 Project Number: 2022 Annual CWRF Effluent Priority

Pollutant Scan

Reported: 05/05/2022 09:15

Project Manager: Jeff Parks

(Continued)

olatile Organic Compounds by P&T and GC/MS (Contir	nued)										
					Spike	Source		%REC		RPD	
	Result	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
tch: W2C1574 - EPA 624.1 (Continued)											
CS Dup (W2C1574-BSD1) Chloromethane	46.3	0.20	1.0	/!	Prepared & A	nalyzed: 03/		0 4 272	4	0.E	
cis-1.2-Dichloroethene		0.29	1.0	ug/l	50.0 50.0		93	0.1-273	4	25 25	
,	43.9	0.38	1.0	ug/l			88	85-121	3		
cis-1,3-Dichloropropene Dibromochloromethane		0.36	1.0	ug/l	50.0		108	0.1-227	5	25	
	60.1	0.35	1.0	ug/l	50.0		120	53-149	3	25	
,	45.9	0.30	1.0	ug/l	50.0		92	67-126	8	25	
Ethylbenzene		0.41	1.0	ug/l	50.0		94	37-162	2	25	
m,p-Xylene m-Dichlorobenzene		0.29	1.0	ug/l	50.0		96	81-121	3	25	
		0.39	1.0	ug/l	50.0		101	59-156	3	25	
Methyl tert-butyl ether (MTBE)		0.40	1.0	ug/l	200		100	80-128	9	25	
Methylene chloride		0.39	1.0	ug/l	50.0		90	0.1-221	4	25	
o-Dichlorobenzene		0.35	1.0	ug/l	50.0		85	18-190	0.8	25	
o-Xylene		0.29	1.0	ug/l	50.0		98	84-121	4	25	
p-Dichlorobenzene		0.42	1.0	ug/l	50.0		87	18-190	3	25	
Tert-butyl alcohol		2.1	5.0	ug/l	200		95	53-144	9	25	
Tetrachloroethene		0.34	1.0	ug/l	50.0		100	64-148	4	25	
Toluene	50.9	0.36	1.0	ug/l	50.0		102	47-150	5	25	
trans-1,2-Dichloroethene	45.9	0.27	1.0	ug/l	50.0		92	54-156	5	25	
trans-1,3-Dichloropropene		0.33	1.0	ug/l	50.0		110	17-183	4	25	
Trichloroethene		0.34	1.0	ug/l	50.0		95	71-157	4	25	
Trichlorofluoromethane	48.4	0.43	1.0	ug/l	50.0		97	17-181	4	25	
Vinyl chloride		0.31	1.0	ug/l	50.0		89	0.1-251	0.03	25	
urrogate(s) 1,2-Dichloroethane-d4				ug/l	50.0		97	82-125			
4-Bromofluorobenzene				ug/l	50.0		102	88-108			
Toluene-d8				ug/l	50.0		101	92-112			
	_			ŭ							
Matrix Spike (W2C1574-MS1) Sc 1,1,1-Trichloroethane	54.4	C22009-01 0.31	1.0	ug/l	Prepared & A 50.0	nalyzed: 03/ ND	109	52-162			
1,1,2,2-Tetrachloroethane	45.5	0.38	1.0	ug/l	50.0	ND	91	46-157			
1,1,2-Trichloroethane	56.6	0.42	1.0	ug/l	50.0	ND	113	52-150			
1,1-Dichloroethane	49.9	0.32	1.0	ug/l	50.0	ND	100	59-155			
1,1-Dichloroethene	51.1	0.32	1.0	ug/l	50.0	ND	102	0.1-234			
1,2-Dichloroethane	48.7	0.54	1.0	ug/l	50.0	ND	97	49-155			
1,2-Dichloropropane		0.42	1.0	ug/l	50.0	ND	106	0.1-210			
2-Butanone	44.1	2.0	5.0	ug/l	50.0	ND	88	36-145			
2-Chloroethyl vinyl ether	52.9	0.19	1.0	ug/l	50.0	ND	106	0.1-305			
2-Hexanone	57.3	0.19	5.0	ug/l	50.0	ND	115	46-152			
4-Methyl-2-pentanone	54.0	0.40	5.0	ug/l	50.0	ND	108	54-146			
Acetone	54.0	1.6	5.0	_	50.0	48.8	99	11-169			
Acrolein		1.0	5.0	ug/l ug/l	50.0	46.6 ND	23	5-170			MS-0

FINAL REPORT

Encina Wastewater Authority 6200 Avenida Encinas Carlsbad, CA 92011 Project Number: 2022 Annual CWRF Effluent Priority

Pollutant Scan

Project Manager: Jeff Parks

Reported:

05/05/2022 09:15

2C22092

Quality Control Results

(Continued)

Page 28 of 36

					Spike	Source		%REC		RPD	
Analyte	Result	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifi
tch: W2C1574 - EPA 624.1 (Continued)											
Matrix Spike (W2C1574-MS1)	Source: 2	C22009-01			Prepared & A	nalyzed: 03/2	23/22				
Acrylonitrile	45.2	0.63	2.0	ug/l	50.0	ND	90	59-133			
Benzene	53.4	0.47	1.0	ug/l	50.0	ND	107	37-151			
Bromodichloromethane	59.8	0.44	1.0	ug/l	50.0	ND	120	35-155			
Bromoform	58.1	0.27	1.0	ug/l	50.0	ND	116	45-169			
Bromomethane		0.50	1.0	ug/l	50.0	ND	5	0.1-242			
Carbon tetrachloride	57.8	0.28	1.0	ug/l	50.0	ND	116	70-140			
Chlorobenzene	52.2	0.35	1.0	ug/l	50.0	ND	104	37-160			
Chloroethane	49.4	0.38	1.0	ug/l	50.0	ND	99	14-230			
Chloroform	64.5	0.29	1.0	ug/l	50.0	10.4	108	51-138			
Chloromethane	47.7	0.29	1.0	ug/l	50.0	ND	95	0.1-273			
cis-1,3-Dichloropropene	6.80	0.36	1.0	ug/l	50.0	ND	14	0.1-227			
Dibromochloromethane	64.6	0.35	1.0	ug/l	50.0	ND	129	53-149			
Dichlorodifluoromethane (Freon 12)	45.5	0.30	1.0	ug/l	50.0	ND	91	32-141			
Ethylbenzene	52.1	0.41	1.0	ug/l	50.0	ND	104	37-162			
m-Dichlorobenzene	56.3	0.39	1.0	ug/l	50.0	ND	113	59-156			
Methylene chloride	48.3	0.39	1.0	ug/l	50.0	ND	97	0.1-221			
o-Dichlorobenzene	48.0	0.35	1.0	ug/l	50.0	ND	96	18-190			
p-Dichlorobenzene	48.0	0.42	1.0	ug/l	50.0	ND	96	18-190			
Tetrachloroethene		0.34	1.0	ug/l	50.0	ND	109	64-148			
Toluene		0.36	1.0	ug/l	50.0	ND	112	47-150			
trans-1,2-Dichloroethene	49.2	0.27	1.0	ug/l	50.0	ND	98	54-156			
trans-1,3-Dichloropropene		0.33	1.0	ug/l	50.0	ND	59	17-183			
Trichloroethene		0.34	1.0	ug/l	50.0	ND	110	71-157			
Trichlorofluoromethane		0.43	1.0	ug/l	50.0	ND	100	17-181			
Vinyl chloride	****	0.31	1.0	ug/l	50.0	ND	99	0.1-251			
urroqate(s)								0.1-201			
1,2-Dichloroethane-d4	48.0			ug/l	50.0		96	82-125			
4-Bromofluorobenzene	51.2			ug/l	50.0		102	88-108			
Toluene-d8	51.1			ug/l	50.0		102	92-112			
Matrix Spike Dup (W2C1574-MSD1)	Source: 2	C22009-01			Prepared & A	naluzod: 02/	22/22				
1,1,1-Trichloroethane		0.31	1.0	ug/l	50.0	ND	104	52-162	4	25	
1,1,2,2-Tetrachloroethane	45.4	0.38	1.0	ug/l	50.0	ND	91	46-157	0.07	25	
1,1,2-Trichloroethane	55.4	0.42	1.0	ug/l	50.0	ND	111	52-150	2	25	
1,1-Dichloroethane	48.9	0.32	1.0	ug/l	50.0	ND	98	59-155	2	25	
1,1-Dichloroethene	49.0	0.32	1.0	ug/l	50.0	ND	98	0.1-234	4	25	
1,2-Dichloroethane	47.9	0.54	1.0	ug/l	50.0	ND	96	49-155	2	25	
1,2-Dichloropropane	****	0.42	1.0	ug/l	50.0	ND	107	0.1-210	0.8	25	
2-Butanone		2.0	5.0	ug/l	50.0	ND	87	36-145	1	25	
2-Chloroethyl vinyl ether		0.19	1.0	ug/l	50.0	ND	104	0.1-305	2	25	

FINAL REPORT

Encina Wastewater Authority 6200 Avenida Encinas Carlsbad, CA 92011

Blank (W2C1791-BLK1)

1,1,1-Trichloroethane

1,1,2-Trichloroethane

1,1-Dichloroethane

2C22092

1,1,2,2-Tetrachloroethane

Project Number: 2022 Annual CWRF Effluent Priority

Pollutant Scan

Project Manager: Jeff Parks

Reported: 05/05/2022 09:15

05/05/20

Quality Control Results

(Continued)

Page 29 of 36

					Spike	Source		%REC		RPD	
Analyte	Result	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
tch: W2C1574 - EPA 624.1 (Continued)											
Matrix Spike Dup (W2C1574-MSD1)	Source: 2	C22009-01			Prepared & A	nalyzed: 03/	23/22				
2-Hexanone	57.2	0.46	5.0	ug/l	50.0	ND	114	46-152	0.3	25	
4-Methyl-2-pentanone	53.1	0.59	5.0	ug/l	50.0	ND	106	54-146	2	25	
Acetone	531	1.6	5.0	ug/l	500	48.8	96	11-169	2	25	
Acrolein		1.2	5.0	ug/l	50.0	ND	3	5-170	200	25	J, MS-0
Acrylonitrile	45.0	0.63	2.0	ug/l	50.0	ND	90	59-133	0.6	25	
Benzene	52.7	0.47	1.0	ug/l	50.0	ND	105	37-151	1	25	
Bromodichloromethane	59.9	0.44	1.0	ug/l	50.0	ND	120	35-155	0.2	25	
Bromoform	- 56.5	0.27	1.0	ug/l	50.0	ND	113	45-169	3	25	
Bromomethane	2.12	0.50	1.0	ug/l	50.0	ND	4	0.1-242	22	25	
Carbon tetrachloride	- 56.4	0.28	1.0	ug/l	50.0	ND	113	70-140	3	25	
Chlorobenzene	49.9	0.35	1.0	ug/l	50.0	ND	100	37-160	4	25	
Chloroethane	47.5	0.38	1.0	ug/l	50.0	ND	95	14-230	4	25	
Chloroform	61.8	0.29	1.0	ug/l	50.0	10.4	103	51-138	4	25	
Chloromethane	44.9	0.29	1.0	ug/l	50.0	ND	90	0.1-273	6	25	
cis-1,3-Dichloropropene	5.90	0.36	1.0	ug/l	50.0	ND	12	0.1-227	14	25	
Dibromochloromethane	- 63.2	0.35	1.0	ug/l	50.0	ND	126	53-149	2	25	
Dichlorodifluoromethane (Freon 12)	44.5	0.30	1.0	ug/l	50.0	ND	89	32-141	2	25	
Ethylbenzene	50.3	0.41	1.0	ug/l	50.0	ND	101	37-162	4	25	
m-Dichlorobenzene	- 56.7	0.39	1.0	ug/l	50.0	ND	113	59-156	0.7	25	
Methylene chloride	47.6	0.39	1.0	ug/l	50.0	ND	95	0.1-221	1	25	
o-Dichlorobenzene	48.9	0.35	1.0	ug/l	50.0	ND	98	18-190	2	25	
p-Dichlorobenzene	48.2	0.42	1.0	ug/l	50.0	ND	96	18-190	0.3	25	
Tetrachloroethene	- 54.2	0.34	1.0	ug/l	50.0	ND	108	64-148	1	25	
Toluene	54.9	0.36	1.0	ug/l	50.0	ND	110	47-150	2	25	
trans-1,2-Dichloroethene	47.5	0.27	1.0	ug/l	50.0	ND	95	54-156	4	25	
trans-1,3-Dichloropropene	27.9	0.33	1.0	ug/l	50.0	ND	56	17-183	6	25	
Trichloroethene	54.4	0.34	1.0	ug/l	50.0	ND	109	71-157	2	25	
Trichlorofluoromethane	49.4	0.43	1.0	ug/l	50.0	ND	99	17-181	1	25	
Vinyl chloride	48.0	0.31	1.0	ug/l	50.0	ND	96	0.1-251	3	25	
urrogate(s)											
1,2-Dichloroethane-d4	48.4			ug/l	50.0		97	82-125			
4-Bromofluorobenzene	49.7			ug/l	50.0		99	88-108			
Toluene-d8	52.7			ug/l	50.0		105	92-112			

1.0

1.0

1.0

ug/l

ug/l

ug/l

ug/l

0.31

0.38

0.42

0.32

Prepared & Analyzed: 03/25/22

FINAL REPORT

Encina Wastewater Authority 6200 Avenida Encinas Carlsbad, CA 92011 Project Number: 2022 Annual CWRF Effluent Priority

Pollutant Scan

Reported: 05/05/2022 09:15

Project Manager: Jeff Parks

(Continued)

Volatile Organic Compounds by P&T and GC/MS (Continued)										
				Spike	Source		%REC		RPD	
Analyte Result	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
Batch: W2C1791 - EPA 624.1 (Continued)										
Blank (W2C1791-BLK1) 1,1-Dichloroethene ND	0.32	1.0	ug/l	Prepared & A	nalyzed: 03/2	25/22				
1,2-Dichloroethane ND	0.54	1.0	ug/l							
1,2-Dichloropropane ND	0.42	1.0	ug/l							
2-Butanone ND	2.0	5.0	ug/l							
2-Chloroethyl vinyl ether ND	0.19	1.0	ug/l							
2-Hexanone ND	0.46	5.0	ug/l							
4-Methyl-2-pentanone ND	0.59	5.0	ug/l							
Acetone ND	1.6	5.0	ug/l							
Acrolein ND	1.2	5.0	ug/l							
Acrylonitrile ND	0.63	2.0	ug/l							
Benzene ND	0.47	1.0	ug/l							
Bromodichloromethane ND	0.44	1.0	ug/l							
Bromoform ND	0.27	1.0	ug/l							
Bromomethane ND	0.50	1.0	ug/l							
Carbon Disulfide ND	0.33	1.0	ug/l							
Carbon tetrachloride ND	0.28	1.0	ug/l							
Chlorobenzene ND	0.35	1.0	ug/l							
Chloroethane ND	0.38	1.0	ug/l							
Chloroform ND	0.29	1.0	ug/l							
Chloromethane ND	0.29	1.0	ug/l							
cis-1,3-Dichloropropene ND	0.36	1.0	ug/l							
Dibromochloromethane ND	0.35	1.0	ug/l							
Dichlorodifluoromethane (Freon 12)	0.30	1.0	ug/l							
Ethylbenzene ND	0.41	1.0	ug/l							
m-Dichlorobenzene ND	0.39	1.0	ug/l							
Methyl tert-butyl ether (MTBE)	0.40	1.0	ug/l							
Methylene chloride ND	0.39	1.0	ug/l							
o-Dichlorobenzene ND	0.35	1.0	ug/l							
p-Dichlorobenzene ND	0.42	1.0	ug/l							
Tetrachloroethene ND	0.34	1.0	ug/l							
Toluene ND	0.36	1.0	ug/l							
trans-1,2-Dichloroethene ND	0.27	1.0	ug/l							
trans-1,3-Dichloropropene ND	0.33	1.0	ug/l							
Trichloroethene	0.34	1.0	ug/l							
Trichlorofluoromethane	0.43	1.0	ug/l							
Vinyl chloride ND	0.31	1.0	ug/l							
Surrogate(s)										
1,2-Dichloroethane-d4 48.7			ug/l	50.0		97	82-125			
4-Bromofluorobenzene 51.8			ug/l	50.0		104	88-108			

FINAL REPORT

Encina Wastewater Authority 6200 Avenida Encinas Carlsbad, CA 92011 Project Number: 2022 Annual CWRF Effluent Priority

Pollutant Scan

Project Manager: Jeff Parks

Reported:

05/05/2022 09:15

2C22092

Quality Control Results

(Continued)

Page 31 of 36

					Spike	Source	%REC		RPD	
Analyte	Result	MDL	MRL	Units	Level	Result %REC	Limits	RPD	Limit	Qualifi
atch: W2C1791 - EPA 624.1 (Continued)										
Blank (W2C1791-BLK1)					Prepared & A	nalyzed: 03/25/22				
Surrogate(s) Toluene-d8	49.3			ug/l	50.0	99	92-112			
LCC (MDC4704 PC4)				-	D					
LCS (W2C1791-BS1) 1,1,1-Trichloroethane	48.1	0.31	1.0	ug/l	50.0	.nalyzed: 03/25/22 96	52-162			
1,1,2,2-Tetrachloroethane	42.7	0.38	1.0	ug/l	50.0	85	46-157			
1,1,2-Trichloroethane	49.6	0.42	1.0	ug/l	50.0	99	52-150			
1,1-Dichloroethane	44.4	0.32	1.0	ug/l	50.0	89	59-155			
1,1-Dichloroethene	44.7	0.32	1.0	ug/l	50.0	89	0.1-234			
1,2-Dichloroethane	43.5	0.54	1.0	ug/l	50.0	87	49-155			
1,2-Dichloropropane	48.8	0.42	1.0	ug/l	50.0	98	0.1-210			
2-Butanone	40.3	2.0	5.0	ug/l	50.0	81	67-136			
2-Chloroethyl vinyl ether	48.1	0.19	1.0	ug/l	50.0	96	0.1-305			
2-Hexanone	54.4	0.46	5.0	ug/l	50.0	109	76-133			
4-Methyl-2-pentanone	49.2	0.59	5.0	ug/l	50.0	98	74-132			
Acetone		1.6	5.0	ug/l	500	94	60-147			
Acrolein	92.5	1.2	5.0	ug/l	50.0	185	49-152			Q-(
Acrylonitrile	43.7	0.63	2.0	ug/l	50.0	87	74-127			
Benzene		0.47	1.0	ug/l	50.0	94	37-151			
Bromodichloromethane	53.2	0.44	1.0	ug/l	50.0	106	35-155			
Bromoform	53.5	0.27	1.0	ug/l	50.0	107	45-169			
Bromomethane	43.9	0.50	1.0	ug/l	50.0	88	0.1-242			
Carbon Disulfide	50.3	0.33	1.0	ug/l	50.0	101	79-118			
Carbon tetrachloride	52.9	0.28	1.0	ug/l	50.0	106	70-140			
Chlorobenzene	46.2	0.35	1.0	ug/l	50.0	92	37-160			
Chloroethane	42.4	0.38	1.0	ug/l	50.0	85	14-230			
Chloroform	47.2	0.29	1.0	ug/l	50.0	94	51-138			
Chloromethane	43.7	0.29	1.0	ug/l	50.0	87	0.1-273			
cis-1,2-Dichloroethene	43.2	0.38	1.0	ug/l	50.0	86	85-121			
cis-1,3-Dichloropropene	53.5	0.36	1.0	ug/l	50.0	107	0.1-227			
Dibromochloromethane	59.3	0.35	1.0	ug/l	50.0	119	53-149			
Dichlorodifluoromethane (Freon 12)	43.9	0.30	1.0	ug/l	50.0	88	67-126			
Ethylbenzene	47.3	0.41	1.0	ug/l	50.0	95	37-162			
m,p-Xylene	46.3	0.29	1.0	ug/l	50.0	93	81-121			
m-Dichlorobenzene	48.9	0.39	1.0	ug/l	50.0	98	59-156			
Methyl tert-butyl ether (MTBE)	188	0.40	1.0	ug/l	200	94	80-128			
Methylene chloride	42.1	0.39	1.0	ug/l	50.0	84	0.1-221			
o-Dichlorobenzene		0.35	1.0	ug/l	50.0	82	18-190			
o-Xylene		0.29	1.0	ug/l	50.0	96	84-121			
p-Dichlorobenzene		0.42	1.0	ug/l	50.0	82	18-190			

FINAL REPORT

Encina Wastewater Authority 6200 Avenida Encinas Carlsbad, CA 92011

2C22092

Project Number: 2022 Annual CWRF Effluent Priority

Pollutant Scan

Reported: 05/05/2022 09:15

Project Manager: Jeff Parks

Quality Control Results

(Continued)

Page 32 of 36

					Spike	Source		%REC		RPD	
Analyte Re	esult	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
atch: W2C1791 - EPA 624.1 (Continued)											
LCS (W2C1791-BS1)					Prepared & A	nalyzed: 03/25	/22				
Tert-butyl alcohol	184	2.1	5.0	ug/l	200		92	53-144			
Tetrachloroethene	50.3	0.34	1.0	ug/l	50.0		101	64-148			
Toluene	49.9	0.36	1.0	ug/l	50.0		100	47-150			
trans-1,2-Dichloroethene	43.2	0.27	1.0	ug/l	50.0		86	54-156			
/* I I	53.8	0.33	1.0	ug/l	50.0		108	17-183			
Trichloroethene	47.9	0.34	1.0	ug/l	50.0		96	71-157			
	47.0	0.43	1.0	ug/l	50.0		94	17-181			
Vinyl chloride		0.31	1.0	ug/l	50.0		87	0.1-251			
Surrogate(s) 1,2-Dichloroethane-d4				ug/l	50.0		95	82-125			
4-Bromofluorobenzene	50.4			ug/l	50.0		101	88-108			
Toluene-d8	50.7			ug/l	50.0		101	92-112			
LCS Dup (W2C1791-BSD1)					Prepared & A	nalyzed: 03/25	/22				
1,1,1-Trichloroethane	53.2	0.31	1.0	ug/l	50.0	•	106	52-162	10	25	
1,1,2,2-Tetrachloroethane	48.6	0.38	1.0	ug/l	50.0		97	46-157	13	25	
1,1,2-Trichloroethane	55.5	0.42	1.0	ug/l	50.0		111	52-150	11	25	
1,1-Dichloroethane	48.3	0.32	1.0	ug/l	50.0		97	59-155	8	25	
1,1-Dichloroethene	47.1	0.32	1.0	ug/l	50.0		94	0.1-234	5	25	
1,2-Dichloroethane	48.4	0.54	1.0	ug/l	50.0		97	49-155	11	25	
1,2-Dichloropropane	53.2	0.42	1.0	ug/l	50.0		106	0.1-210	9	25	
2-Butanone	46.7	2.0	5.0	ug/l	50.0		93	67-136	15	25	
2-Chloroethyl vinyl ether	53.8	0.19	1.0	ug/l	50.0		108	0.1-305	11	25	
2-Hexanone	62.2	0.46	5.0	ug/l	50.0		124	76-133	13	25	
4-Methyl-2-pentanone	57.1	0.59	5.0	ug/l	50.0		114	74-132	15	25	
Acetone	520	1.6	5.0	ug/l	500		104	60-147	11	25	
Acrolein	105	1.2	5.0	ug/l	50.0		211	49-152	13	25	Q-0
Acrylonitrile	50.3	0.63	2.0	ug/l	50.0		101	74-127	14	25	
Benzene	51.3	0.47	1.0	ug/l	50.0		103	37-151	8	25	
Bromodichloromethane	57.9	0.44	1.0	ug/l	50.0		116	35-155	9	25	
Bromoform	59.2	0.27	1.0	ug/l	50.0		118	45-169	10	25	
Bromomethane	47.7	0.50	1.0	ug/l	50.0		95	0.1-242	8	25	
Carbon Disulfide	53.9	0.33	1.0	ug/l	50.0		108	79-118	7	25	
Carbon tetrachloride	57.3	0.28	1.0	ug/l	50.0		115	70-140	8	25	
Chlorobenzene	50.5	0.35	1.0	ug/l	50.0		101	37-160	9	25	
Chloroethane	46.1	0.38	1.0	ug/l	50.0		92	14-230	8	25	
Chloroform	52.5	0.29	1.0	ug/l	50.0		105	51-138	11	25	
Chloromethane	48.1	0.29	1.0	ug/l	50.0		96	0.1-273	9	25	
cis-1,2-Dichloroethene	47.4	0.38	1.0	ug/l	50.0		95	85-121	9	25	
cis-1,3-Dichloropropene	57.0	0.36	1.0	ug/l	50.0		114	0.1-227	6	25	

FINAL REPORT

Encina Wastewater Authority 6200 Avenida Encinas Carlsbad, CA 92011

Project Number: 2022 Annual CWRF Effluent Priority

Pollutant Scan

Reported: 05/05/2022 09:15

Project Manager: Jeff Parks

olatile Organic Compounds by P&T and GC/I	MS (Continued)										
					Spike	Source		%REC		RPD	
Analyte	Result	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifi
ch: W2C1791 - EPA 624.1 (Continued)											
CS Dup (W2C1791-BSD1) Dibromochloromethane	65.5	0.35	1.0	ug/l	Prepared & A 50.0	nalyzed: 03/	25/22 131	53-149	10	25	
	48.6	0.30	1.0	ug/l	50.0		97	67-126	10	25	
Ethylbenzene		0.41	1.0	ug/l	50.0		104	37-162	9	25	
m,p-Xylene		0.29	1.0	ug/l	50.0		102	81-121	9	25	
m-Dichlorobenzene		0.39	1.0	ug/l	50.0		107	59-156	9	25	
Methyl tert-butyl ether (MTBE)		0.40	1.0	ug/l	200		105	80-128	11	25	
Methylene chloride		0.39	1.0	ug/l	50.0		94	0.1-221	11	25	
o-Dichlorobenzene	****	0.35	1.0	ug/l	50.0		93	18-190	13	25	
o-Xylene		0.29	1.0	ug/l	50.0		103	84-121	8	25	
p-Dichlorobenzene		0.42	1.0	ug/l	50.0		94	18-190	14	25	
Tert-butyl alcohol		2.1	5.0	ug/l	200		106	53-144	14	25	
Tetrachloroethene		0.34	1.0	ug/l	50.0		108	64-148	7	25	
Toluene		0.36	1.0	ug/l	50.0		109	47-150	9	25	
trans-1,2-Dichloroethene		0.27	1.0	ug/l	50.0		94	54-156	9	25	
trans-1,3-Dichloropropene		0.33	1.0	ug/l	50.0		120	17-183	11	25	
Trichloroethene		0.34	1.0	ug/l	50.0		102	71-157	7	25	
Trichlorofluoromethane		0.43	1.0	ug/l	50.0		100	17-181	7	25	
Vinyl chloride		0.31	1.0	ug/l	50.0		95	0.1-251	8	25	
rrogate(s)											
1,2-Dichloroethane-d4	48.9			ug/l	50.0		98	82-125			
4-Bromofluorobenzene	51.6			ug/l	50.0		103	88-108			
Toluene-d8	51.6			ug/l	50.0		103	92-112			
latrix Spike (W2C1791-MS1)	Source: 20	C17008-01			Prepared & A	nalyzed: 03/	25/22				
1,1,1-Trichloroethane	55.8	0.31	1.0	ug/l	50.0	ND	112	52-162			
1,1,2,2-Tetrachloroethane	48.8	0.38	1.0	ug/l	50.0	ND	98	46-157			
1,1,2-Trichloroethane	58.4	0.42	1.0	ug/l	50.0	ND	117	52-150			
1,1-Dichloroethane	51.9	0.32	1.0	ug/l	50.0	ND	104	59-155			
1,1-Dichloroethene	53.8	0.32	1.0	ug/l	50.0	ND	108	0.1-234			
1,2-Dichloroethane	51.2	0.54	1.0	ug/l	50.0	ND	102	49-155			
1,2-Dichloropropane	56.1	0.42	1.0	ug/l	50.0	ND	112	0.1-210			
2-Butanone	55.7	2.0	5.0	ug/l	50.0	ND	111	36-145			
2-Chloroethyl vinyl ether	52.9	0.19	1.0	ug/l	50.0	ND	106	0.1-305			
2-Hexanone	62.8	0.46	5.0	ug/l	50.0	ND	126	46-152			
4-Methyl-2-pentanone	56.2	0.59	5.0	ug/l	50.0	ND	112	54-146			
Acetone	538	1.6	5.0	ug/l	500	ND	108	11-169			
Acrolein		1.2	5.0	ug/l	50.0	ND	134	5-170			
Acrylonitrile	50.4	0.63	2.0	ug/l	50.0	ND	101	59-133			
Benzene	56.2	0.47	1.0	ug/l	50.0	ND	112	37-151			

FINAL REPORT

Encina Wastewater Authority 6200 Avenida Encinas Carlsbad, CA 92011 Project Number: 2022 Annual CWRF Effluent Priority

Pollutant Scan

Reported: 05/05/2022 09:15

Project Manager: Jeff Parks

2C22092

Quality Control Results

(Continued)

Page 34 of 36

					Spike	Source		%REC		RPD	
Analyte	Result	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualif
tch: W2C1791 - EPA 624.1 (Continued)											
Matrix Spike (W2C1791-MS1)	Source: 2	C17008-01			Prepared & A	nalyzed: 03/	25/22				
Bromoform	63.8	0.27	1.0	ug/l	50.0	ND	128	45-169			
Bromomethane		0.50	1.0	ug/l	50.0	ND	103	0.1-242			
Carbon tetrachloride	61.8	0.28	1.0	ug/l	50.0	ND	124	70-140			
Chlorobenzene	53.3	0.35	1.0	ug/l	50.0	ND	107	37-160			
Chloroethane	49.9	0.38	1.0	ug/l	50.0	ND	100	14-230			
Chloroform	- 54.9	0.29	1.0	ug/l	50.0	ND	110	51-138			
Chloromethane	- 45.8	0.29	1.0	ug/l	50.0	ND	92	0.1-273			
cis-1,3-Dichloropropene		0.36	1.0	ug/l	50.0	ND	122	0.1-227			
Dibromochloromethane	- 72.0	0.35	1.0	ug/l	50.0	ND	144	53-149			
Dichlorodifluoromethane (Freon 12)	- 41.2	0.30	1.0	ug/l	50.0	ND	82	32-141			
Ethylbenzene	55.2	0.41	1.0	ug/l	50.0	ND	110	37-162			
m-Dichlorobenzene	56.1	0.39	1.0	ug/l	50.0	ND	112	59-156			
Methylene chloride	- 50.8	0.39	1.0	ug/l	50.0	ND	102	0.1-221			
o-Dichlorobenzene	50.6	0.35	1.0	ug/l	50.0	ND	101	18-190			
p-Dichlorobenzene	50.6	0.42	1.0	ug/l	50.0	ND	101	18-190			
Tetrachloroethene	- 59.4	0.34	1.0	ug/l	50.0	ND	119	64-148			
Toluene	59.0	0.36	1.0	ug/l	50.0	ND	118	47-150			
trans-1,2-Dichloroethene	52.7	0.27	1.0	ug/l	50.0	ND	105	54-156			
trans-1,3-Dichloropropene	61.8	0.33	1.0	ug/l	50.0	ND	124	17-183			
Trichloroethene	148	0.34	1.0	ug/l	50.0	ND	297	71-157			MS-
Trichlorofluoromethane	53.6	0.43	1.0	ug/l	50.0	ND	107	17-181			
Vinyl chloride	46.1	0.31	1.0	ug/l	50.0	ND	92	0.1-251			
· ırroqate(s)											
1,2-Dichloroethane-d4	49.5			ug/l	50.0		99	82-125			
4-Bromofluorobenzene	50.3			ug/l	50.0		101	88-108			
Toluene-d8	52.5			ug/l	50.0		105	92-112			
Matrix Spike Dup (W2C1791-MSD1)	Source: 2	C17008-01			Prepared & A	nalyzed: 03/	25/22				
1,1,1-Trichloroethane	- 56.6	0.31	1.0	ug/l	50.0	ND	113	52-162	2	25	
1,1,2,2-Tetrachloroethane	51.0	0.38	1.0	ug/l	50.0	ND	102	46-157	4	25	
1,1,2-Trichloroethane	59.0	0.42	1.0	ug/l	50.0	ND	118	52-150	1	25	
1,1-Dichloroethane	52.4	0.32	1.0	ug/l	50.0	ND	105	59-155	1	25	
1,1-Dichloroethene	53.8	0.32	1.0	ug/l	50.0	ND	108	0.1-234	0.07	25	
1,2-Dichloroethane	50.7	0.54	1.0	ug/l	50.0	ND	101	49-155	0.9	25	
1,2-Dichloropropane	- 57.2	0.42	1.0	ug/l	50.0	ND	114	0.1-210	2	25	
2-Butanone	- 56.8	2.0	5.0	ug/l	50.0	ND	114	36-145	2	25	
2-Chloroethyl vinyl ether	55.8	0.19	1.0	ug/l	50.0	ND	112	0.1-305	5	25	
2-Hexanone	63.7	0.46	5.0	ug/l	50.0	ND	127	46-152	1	25	
4-Methyl-2-pentanone	58.6	0.59	5.0	ug/l	50.0	ND	117	54-146	4	25	
Acetone		1.6	5.0	ug/l	500	ND	109	11-169	2	25	

FINAL REPORT

Encina Wastewater Authority 6200 Avenida Encinas Carlsbad, CA 92011 Project Number: 2022 Annual CWRF Effluent Priority

Pollutant Scan

Reported: 05/05/2022 09:15

Project Manager: Jeff Parks

(Continued)

Quality Control Results	
Volatile Organic Compounds by P&T and GC/MS (Continued)	

					Spike	Source	0/855	%REC		RPD	
Analyte	Result	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
Batch: W2C1791 - EPA 624.1 (Continued)											
Matrix Spike Dup (W2C1791-MSD1) Acrolein		C17008-01 1.2	F 0	/!	Prepared & A 50.0	.nalyzed: 03/2 ND	2 5/22 131	5-170	2	25	
			5.0	ug/l						25 25	
· ·-· , ·-····		0.63	2.0	ug/l	50.0	ND	101	59-133	0.3		
		0.47	1.0	ug/l	50.0	ND	112	37-151	0.8	25	
	*	0.44	1.0	ug/l	50.0	ND	128	35-155	0.03	25	
Bromoform		0.27	1.0	ug/l	50.0	ND	131	45-169	3	25	
Bromomethane	02	0.50	1.0	ug/l	50.0	ND	102	0.1-242	0.8	25	
Carbon tetrachloride	00.0	0.28	1.0	ug/l	50.0	ND	126	70-140	2	25	
Chlorobenzene	00.0	0.35	1.0	ug/l	50.0	ND	111	37-160	4	25	
Chloroethane		0.38	1.0	ug/l	50.0	ND	98	14-230	2	25	
Chloroform	55.0	0.29	1.0	ug/l	50.0	ND	110	51-138	0.2	25	
Chloromethane	47.1	0.29	1.0	ug/l	50.0	ND	94	0.1-273	3	25	
cis-1,3-Dichloropropene		0.36	1.0	ug/l	50.0	ND	125	0.1-227	3	25	
Dibromochloromethane	71.5	0.35	1.0	ug/l	50.0	ND	143	53-149	0.7	25	
Dichlorodifluoromethane (Freon 12)	43.4	0.30	1.0	ug/l	50.0	ND	87	32-141	5	25	
Ethylbenzene	56.4	0.41	1.0	ug/l	50.0	ND	113	37-162	2	25	
m-Dichlorobenzene	57.1	0.39	1.0	ug/l	50.0	ND	114	59-156	2	25	
Methylene chloride	50.4	0.39	1.0	ug/l	50.0	ND	101	0.1-221	8.0	25	
o-Dichlorobenzene	52.3	0.35	1.0	ug/l	50.0	ND	105	18-190	3	25	
p-Dichlorobenzene	51.8	0.42	1.0	ug/l	50.0	ND	104	18-190	2	25	
Tetrachloroethene	58.6	0.34	1.0	ug/l	50.0	ND	117	64-148	1	25	
Toluene	59.6	0.36	1.0	ug/l	50.0	ND	119	47-150	1	25	
trans-1,2-Dichloroethene		0.27	1.0	ug/l	50.0	ND	105	54-156	0.5	25	
trans-1,3-Dichloropropene		0.33	1.0	ug/l	50.0	ND	125	17-183	0.9	25	
Trichloroethene	77.9	0.34	1.0	ug/l	50.0	ND	156	71-157	62	25	MS-05
Trichlorofluoromethane	54.2	0.43	1.0	ug/l	50.0	ND	108	17-181	1	25	
Vinyl chloride	47.9	0.31	1.0	ug/l	50.0	ND	96	0.1-251	4	25	
Surrogate(s) 1,2-Dichloroethane-d4				ug/l	50.0		99	82-125			
4-Bromofluorobenzene				ug/l	50.0		103	88-108			
Toluene-d8				ug/l	50.0		106	92-112			

FINAL REPORT

Encina Wastewater Authority 6200 Avenida Encinas Carlsbad, CA 92011

Item

Source

Project Number: 2022 Annual CWRF Effluent Priority

Pollutant Scan

Reported:

05/05/2022 09:15

Notes and Definitions

AN-IP	Sample results for structural isomers may have contribution from their isomeric pair.
J	Estimated conc. detected <mrl and="">MDL.</mrl>
M-04	Due to the nature of matrix interferences, sample extract was diluted prior to analysis. The MDL and MRL were raised due to the dilution.
MS-01	The spike recovery for this QC sample is outside of established control limits possibly due to sample matrix interference.
MS-05 Q-08	The spike recovery and/or RPD were outside acceptance limits for the MS and/or MSD due to possible matrix interference. The LCS and/or LCSD were within acceptance limits showing that the laboratory is in control and the data is acceptable. High bias in the QC sample does not affect sample result since analyte was not detected or below the reporting limit.
Q-12 R-01	The RPD result exceeded the QC control limits; however, both percent recoveries were acceptable. Sample results for the QC batch were accepted based on the percent recoveries and/or other acceptable QC data. The MDL and/or MRL for this analyte has been raised to account for matrix interference.
%REC	Percent Recovery
Dil	Dilution
MDL	Method Detection Limit
MRL ND	The minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence. The MRL is also known as Limit of Quantitation (LOQ) NOT DETECTED at or above the Method Reporting Limit (MRL). If Method Detection Limit (MDL) is reported, then ND means not detected at or
RPD	above the MDL. Relative Percent Difference

Project Manager: Jeff Parks

Any remaining sample(s) will be disposed of one month from the final report date unless other arrangements are made in advance.

All results are expressed on wet weight basis unless otherwise specified.

Sample that was matrix spiked or duplicated.

 $All \ samples \ collected \ by \ Weck \ Laboratories \ have \ been \ sampled \ in \ accordance \ to \ laboratory \ SOP \ Number \ MIS002.$

Environment Testing America

ANALYTICAL REPORT

Eurofins Calscience 2841 Dow Avenue, Suite 100 Tustin, CA 92780 Tel: (714)895-5494

Laboratory Job ID: 570-106229-1

Client Project/Site: CWRF Annual Effluent

For:

Encina Wastewater Authority 6200 Avenida Encinas Carlsbad, California 92011

Attn: Jeff Parks

Authorized for release by: 8/16/2022 9:13:12 AM

Janice Hsu, Project Manager I (657)210-6359

Janice.Hsu@et.eurofinsus.com

Review your project results through

----- LINKS -----

Have a Question?

Visit us at: www.eurofinsus.com/Env The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

3

4

5

7

8

9

4 4

12

13

Client: Encina Wastewater Authority Project/Site: CWRF Annual Effluent

Laboratory Job ID: 570-106229-1

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	7
QC Association Summary	8
Lab Chronicle	9
Certification Summary	10
Method Summary	11
Sample Summary	12
Chain of Custody	13
Receipt Checklists	14

4

8

9

11

Definitions/Glossary

Client: Encina Wastewater Authority

Project/Site: CWRF Annual Effluent

Job ID: 570-106229-1

Qualifiers

Metals

Qualifier Description

^+ Continuing Calibration Verification (CCV) is outside acceptance limits, high biased.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Example 2 Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Calscience

8/16/2022

Page 3 of 14

Case Narrative

Client: Encina Wastewater Authority Project/Site: CWRF Annual Effluent

Job ID: 570-106229-1

Job ID: 570-106229-1

Laboratory: Eurofins Calscience

Narrative

Job Narrative 570-106229-1

Comments

No additional comments.

Receipt

The sample was received on 8/11/2022 7:11 PM. Unless otherwise noted below, the sample arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 1.2° C.

Receipt Exceptions

The Chain-of-Custody (COC) was incomplete as received. No total number of containers listed. No analysis requested.

Metals

Method 200.8: The continuing calibration verification (CCV) associated with batch 570-256829 recovered above the upper control limit for Beryllium. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated sample is impacted: CWRF Annual Effluent (570-106229-1).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

4

6

b

_

9

10

Detection Summary

Client: Encina Wastewater Authority Project/Site: CWRF Annual Effluent

Job ID: 570-106229-1

Client Sample ID: CWRF Annual Effluent Lab Sample ID: 570-106229-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Antimony	0.93	J	2.0	0.26	ug/L	1	_	200.8	Total
									Recoverable

2

А

6

8

10

11

13

Client Sample Results

Client: Encina Wastewater Authority
Project/Site: CWRF Annual Effluent

Job ID: 570-106229-1

Method: 200.8 - Metals (ICP/MS) - Total Recoverable

Client Sample ID: CWRF Annual Effluent

Date Collected: 08/10/22 07:05

Date Received: 08/11/22 19:11

Lab Sample ID: 570-106229-1

Matrix: Water

Date Received: 08/11/22 19:11									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	0.93	J	2.0	0.26	ug/L		08/15/22 07:02	08/15/22 11:40	1
Beryllium	ND	^+	0.50	0.25	ug/L		08/15/22 07:02	08/15/22 11:40	1
Cadmium	ND		1.0	0.14	ug/L		08/15/22 07:02	08/15/22 11:40	1
Thallium	ND		1.0	0.12	ug/L		08/15/22 07:02	08/15/22 11:40	1

4

6

9

10

4.0

13

Client: Encina Wastewater Authority Job ID: 570-106229-1

Project/Site: CWRF Annual Effluent

Method: 200.8 - Metals (ICP/MS)

Lab Sample ID: MB 570-256685/1-A

Matrix: Water

Analyte

Antimony

Beryllium

Cadmium

Thallium

Analysis Batch: 256829

Client Sample ID: Method Blank Prep Type: Total Recoverable Prep Batch: 256685

MB MB Dil Fac Result Qualifier RL MDL Unit Prepared Analyzed 2.0 0.26 ug/L 08/15/22 07:02 08/15/22 11:07 ND ND 0.50 0.25 ug/L 08/15/22 07:02 08/15/22 11:07 ND 1.0 0.14 ug/L 08/15/22 07:02 08/15/22 11:07 ND 1.0 0.12 ug/L 08/15/22 07:02 08/15/22 11:07

Lab Sample ID: LCS 570-256685/2-A

Matrix: Water

Analysis Batch: 256829

Client Sample ID: Lab Control Sample	
Prep Type: Total Recoverable	
Prep Batch: 256685	

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Antimony	80.0	88.1		ug/L		110	85 - 115	
Beryllium	80.0	89.3		ug/L		112	85 - 115	
Cadmium	80.0	82.1		ug/L		103	85 - 115	
Thallium	80.0	83.3		ug/L		104	85 - 115	

Lab Sample ID: LCSD 570-256685/3-A

Matrix: Water

Client Sample	ID: Lab	Control	Sampl	e Dup
!	Prep Tyl	oe: Total	Recov	erable

Analysis Batch: 256829							Prep Ba	itcn: 2	Coddc
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Antimony	80.0	88.2		ug/L		110	85 - 115	0	20
Beryllium	80.0	87.4		ug/L		109	85 - 115	2	20
Cadmium	80.0	80.9		ug/L		101	85 - 115	1	20
Thallium	80.0	81.9		ug/L		102	85 - 115	2	20

Lab Sample ID: 570-105964-E-1-C MS

Matrix: Water

Analysis Batch: 256829

Client Sample ID: Matrix	Spike
Prep Type: Total Recove	erable

Prep Batch: 256685

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Antimony	1.2	J	80.0	92.5		ug/L		114	80 - 120	
Beryllium	ND		80.0	85.6		ug/L		107	80 - 120	
Cadmium	0.14	J	80.0	77.9		ug/L		97	80 - 120	
Thallium	ND		80.0	77.9		ug/L		97	80 - 120	

Lab Sample ID: 570-105964-E-1-D MSD

Matrix: Water

Analysis Batch: 256829

Client Sample ID: Matrix Spike Duplicate
Prep Type: Total Recoverable

Prep Batch: 256685

/ illuly old Butolli 200020									op D e		,000	
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Antimony	1.2	J	80.0	92.5		ug/L		114	80 - 120	0	20	
Beryllium	ND		80.0	86.1		ug/L		108	80 - 120	1	20	
Cadmium	0.14	J	80.0	78.1		ug/L		98	80 - 120	0	20	
Thallium	ND		80.0	77.3		ug/L		97	80 - 120	1	20	

Page 7 of 14

QC Association Summary

Client: Encina Wastewater Authority

Project/Site: CWRF Annual Effluent

Job ID: 570-106229-1

Metals

Prep Batch: 256685

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-106229-1	CWRF Annual Effluent	Total Recoverable	Water	200.8	
MB 570-256685/1-A	Method Blank	Total Recoverable	Water	200.8	
LCS 570-256685/2-A	Lab Control Sample	Total Recoverable	Water	200.8	
LCSD 570-256685/3-A	Lab Control Sample Dup	Total Recoverable	Water	200.8	
570-105964-E-1-C MS	Matrix Spike	Total Recoverable	Water	200.8	
570-105964-E-1-D MSD	Matrix Spike Duplicate	Total Recoverable	Water	200.8	

Analysis Batch: 256829

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-106229-1	CWRF Annual Effluent	Total Recoverable	Water	200.8	256685
MB 570-256685/1-A	Method Blank	Total Recoverable	Water	200.8	256685
LCS 570-256685/2-A	Lab Control Sample	Total Recoverable	Water	200.8	256685
LCSD 570-256685/3-A	Lab Control Sample Dup	Total Recoverable	Water	200.8	256685
570-105964-E-1-C MS	Matrix Spike	Total Recoverable	Water	200.8	256685
570-105964-E-1-D MSD	Matrix Spike Duplicate	Total Recoverable	Water	200.8	256685

3

4

5

7

8

9

10

11

14

Lab Chronicle

Client: Encina Wastewater Authority

Job ID: 570-106229-1

Project/Site: CWRF Annual Effluent

Client Sample ID: CWRF Annual Effluent Lab Sample ID: 570-106229-1

Date Collected: 08/10/22 07:05 Matrix: Water Date Received: 08/11/22 19:11

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	200.8			50 mL	50 mL	256685	08/15/22 07:02	JP8N	EET CAL 4
Total Recoverable	Analysis	200.8		1			256829	08/15/22 11:40	Y2WS	EET CAL 4
	Instrumen	t ID: ICPMS09								

Laboratory References:

EET CAL 4 = Eurofins Calscience Tustin, 2841 Dow Avenue, Tustin, CA 92780, TEL (714)895-5494

3

4

6

8

9

11

12

Accreditation/Certification Summary

Client: Encina Wastewater Authority

Job ID: 570-106229-1

Project/Site: CWRF Annual Effluent

Laboratory: Eurofins Calscience

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
California	State	3082	07-31-23

3

4

5

7

8

10

13

Method Summary

Client: Encina Wastewater Authority Project/Site: CWRF Annual Effluent

Job ID: 570-106229-1

Method	Method Description	Protocol	Laboratory
200.8	Metals (ICP/MS)	EPA	EET CAL 4
200.8	Preparation, Total Recoverable Metals	EPA	EET CAL 4

Protocol References:

EPA = US Environmental Protection Agency

Laboratory References:

EET CAL 4 = Eurofins Calscience Tustin, 2841 Dow Avenue, Tustin, CA 92780, TEL (714)895-5494

4

5

O

8

9

11

Sample Summary

Client: Encina Wastewater Authority Project/Site: CWRF Annual Effluent

Job ID: 570-106229-1

 Lab Sample ID
 Client Sample ID
 Matrix
 Collected
 Received

 570-106229-1
 CWRF Annual Effluent
 Water
 08/10/22 07:05
 08/11/22 19:11

9

3

4

Q

9

10

10

13

eurofins Environment of America

Chain of Custody Record

17461 Derian Ave Suite 100 Ivine, CA 92614-5817 Phone (949) 261-1022 Fax (949) 260-3297 **Eurofins Calscience Irvine**

	and a second of the second of	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	Carrier Tracking No(e)	
Client Information		Hsu		
Client Contact: Jeff Parks	Phone: 760.268 8801	E-Maii: Janice, Hsu@Eurofinset.com	Page: Page 1 of	_
Company Encina Wastewater Authority		Analysis Requested		
Address. 6200 Avenida Encinas	Due Date Requested:		Preservation Codes	
city Carlsbad	TAT Requested (days)	1	B NaOH C Zn Aceta	
State, Zip: California, 92011	14 Days	IT	D - Nitric Acid E - NaHSO4	id P Na204S I Q - Na2SO3 R - Na2SO3
Phone: 760-268-8801	2002-004C	(d	G - Amehlor H - Ascorbic	
Email: jparks@encinajpa.com	; OM #:	(oN		
Project Name:	Project #:	10 89		vv - pri 4-5 Z - other (specify)
		N) ası	oo to	
Sample Identification	Sample Date Time G=grab) BT=	Matrix red (wewater Sepold, Conversation) in Professor Conversation) in Professor Analy i	iedmuM istoT	Special Instructions/Note:
BE CLUBE Annual EFFIURIT	- 0705 COMO	m m		
			0	
			270-1	570-106229 Chain of Custody
Possible Hazard Identification Non-Hazard Flammable Skin Initant	Poison B Unknown Radiological	Sample Disposal (A fee may be ass Return To Client	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Disposal By Lab Archive For Mont	han 1 month) Months
ested I, II, III, IV, Other (specify)		Requiren	١.	
Empty Kit Relinquished by:	Date.	Time.	Method of Shipment:	
Refinquished by:	v 1730	Company Respended by: A Higar Rivera	a 1730	
Relinquished by $rac{C}{L/M/a_{m}}$ R , Vera	Barting: Con Solution Con Con Con Con Con Con Con Con Con C	Company Received by Company Processed by Company	NACOS 8/11/22 B	Company
Keinquished by				Company
Custody Seals Intact: Custody Seal No. Δ Yes Δ No		Cooler Temperature(s) ^o C and Other Remarks:	" 0.9 /1.2 SC//	~
				Ver. 08/04/2016

Login Sample Receipt Checklist

Client: Encina Wastewater Authority

Job Number: 570-106229-1

Login Number: 106229 List Source: Eurofins Calscience

List Number: 1

Creator: Cortez Diaz, Antonio

Creator. Cortez Diaz, Antonio		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	False	Refer to Job Narrative for details.
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

3

1

5

_

10

12

13

Pace Analytical Services, LLC.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

Report Prepared for:

Kim Tu Weck Laboratories Inc 14859 Clark Avenue Industry CA 91745

> REPORT OF LABORATORY ANALYSIS FOR PCDD/PCDF

Report Information:

Pace Project #: 10602041

Sample Receipt Date: 03/25/2022

Client Project #: 2C22092 Client Sub PO #: N/A

State Cert #: 2929

Invoicing & Reporting Options:

The report provided has been invoiced as a Level 2 PCDD/PCDF Report. If an upgrade of this report package is requested, an additional charge may be applied.

Please review the attached invoice for accuracy and forward any questions to Joanne Richardson, your Pace Project Manager.

This report has been reviewed by:

April 04, 2022

Joanne Richardson, (612) 607-6453

(612) 607-6444 (fax)

Report of Laboratory Analysis

 $This report should not be reproduced, except in full, \\without the written consent of Pace Analytical Services, Inc.$

The results relate only to the samples included in this report.

April 4, 2022

Pace Analytical Services, LLC.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

DISCUSSION

This report presents the results from the analysis performed on one sample submitted by a representative of Weck Laboratories, Inc. The sample was analyzed for the presence or absence of polychlorodibenzo-p-dioxins (PCDDs) and polychlorodibenzofurans (PCDFs) using a modified version of USEPA Method 8290. The estimated detection limits (EDLs) were based on signal-to-noise measurements. Estimated maximum possible concentration (EMPC) values, where present, were treated as positives in the toxic equivalence calculations.

The recoveries of the isotopically-labeled PCDD/PCDF internal standards in the sample extract ranged from 52-118%. All of the labeled internal standard recoveries obtained for this project were within the 40-135% target range specified in Method 8290. Since the quantification of the native 2,3,7,8-substituted congeners was based on isotope dilution, the data were automatically corrected for variation in recovery and accurate values were obtained.

A laboratory method blank was prepared and analyzed with the sample batch as part of our routine quality control procedures. The results show that PCDDs and PCDFs were not detected.

A laboratory spike sample was also prepared with the sample batch using clean reference matrix that had been fortified with native standard materials. The results show that the spiked native compounds were recovered at 85-110%. These results were within the target range for the method. Matrix spikes were prepared with the sample batch using sample material from a separate project; results from these analyses will be provided upon request.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Tel: 612-607-1700 Fax: 612-607-6444

Minnesota Laboratory Certifications

Authority	Certificate #	Authority	Certificate #
		Missouri	10100
A2LA	2926.01	Montana	CERT0092
Alabama	40770	Nebraska	NE-OS-18-06
Alaska-DW	MN00064	Nevada	MN00064
Alaska-UST	17-009	New Hampshire	2081
Arizona	AZ0014	New Jersey	MN002
Arkansas - WW	88-0680	New York	11647
Arkansas-DW	MN00064	North Carolina-	27700
California	2929	North Carolina-	530
Colorado	MN00064	North Dakota	R-036
Connecticut	PH-0256	Ohio-DW	41244
Florida	E87605	Ohio-VAP (170	CL101
Georgia	959	Ohio-VAP (180	CL110
Hawaii	MN00064	Oklahoma	9507
Idaho	MN00064	Oregon- rimary	MN300001
Illinois	200011	Oregon-Second	MN200001
Indiana	C-MN-01	Pennsylvania	68-00563
Iowa	368	Puerto Rico	MN00064
Kansas	E-10167	South Carolina	74003
Kentucky-DW	90062	Tennessee	TN02818
Kentucky-WW	90062	Texas	T104704192
Louisiana-DEQ	AI-84596	Utah	MN00064
Louisiana-DW	MN00064	Vermont	VT-027053137
Maine	MN00064	Virginia	460163
Maryland	322	Washington	C486
Michigan	9909	West Virginia-D	382
Minnesota	027-053-137	West Virginia-D	9952C
Minnesota-Ag	via MN 027-053	Wisconsin	999407970
Minnesota-Petr	1240	Wyoming-UST	via A2LA 2926.
Mississippi	MN00064		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Report No....10601872

Appendix A

Sample Management

Subcontract Order

Subcontracted Laboratory:

Pace Analytical Services - Minneapolis MN

1700 Elm St. SE, Suite 200

Minneapolis, MN 55414 Phone: (612) 607-1700

Fax:

Turn Around Time: Project Manager:

Normal unless noted in comments

Kim G. Tu

Project Name:

Encina WW Authority

Project Number:

Sampler Employed by:

2021 Annual CWRF Effluent Priority P

Drinking Water:

Need Transfer File (xls):

Tracking Number:

Yes

Work Order: 2C22092

Analysis

Sample ID: 2C22092-01/CWRF Effluent 03/21-03/22/21 Sample comment:

Containers Supplied:

Dioxins/Furans - EPA 8290

03/22/2023 07:11

Expires

Comments

Sampled: 03/22/2022 07:11

Matrix:Water

Sampled By: Adam Powell

101

WO#: 10602041

Remarks / Special Comments:

Sample Condition -

Temperature:

Preserved:

(Yes) / No

Evidence Seal Intact:

Yes

Container Attacked:

Yes

Preserved at Lab:

Yes

Date / Time

Relingished By

Date / Time

Page 1 of 1

Document Name: Sample Condition Upon Receipt (SCUR)

Document No.: ENV-FRM-MIN4-0150 Rev.04 Document Revised: 06Jan2022 Page 1 of 1

Pace Analytical Services - Minneapolis

Sample Condition Client Name:			Proje	Heat #: WO#: 10602041			
Upon Receipt WECK Lab. In	c			PM: JMR			
Courier: Fed Ex UPS Pace SpeeDee	USPS Comm	ercial	 Clier	1111			
Tracking Number: 7763 9499 40	172			ptions			
Custody Seal on Cooler/Box Present?	□No		Seals Inta	act? Yes No Biological Tissue Frozen? Yes No N/A			
Packing Material: Bubble Wrap Bubble	Bags	∐Non	e 🔲 (Other: Temp Blank? Yes _No			
Thermometer:			792808	Type Wet Blue None Dry Melted			
Did Samples Originate in West Virginia? ☐Yes ☑N				er Temps Taken? 🗆 Yes 🗆 No 🗔 N/A			
Temp should be above freezing to 6°C Cooler Temp	Read w/t	emp bla	nk:	OC Average Corrected See Exceptions Temp (no temp blank €NV-FRM-MIN4-0142			
Correction Factor: Cooler Temp Corre	cted w/te	emp bla	nk:	oc only): (6 oc □1 Container			
USDA Regulated Soil: (N/A, water) sample/Other: Did samples originate in a quarantine zone within the United States: AL, AR, CA, FL, GA, ID, Did samples originate from a foreign source (internationally, including LA. MS, NC, NM, NY, OK, OR, SC, TN, TX or VA (check maps)? Yes No Hawaii and Puerto Rico)? Yes No If Yes to either question, fill out a Regulated Soil Checklist ENV-FRM-MIN4-0154 and include with SCUR/COC paperwork.							
Location (check one): Duluth Minn	eapolis	. U Vi	rginia	COMMENTS:			
Chain of Custody Present and Filled Out?	ZYes_	□No		1.			
Chain of Custody Relinquished? Sampler Name and/or Signature on COC?	✓Yes ☐Yes	□No □No	☑N/A	3.			
Samples Arrived within Hold Time?	☐ Yes	□No	∠IN/A	4. If Fecal: □<8 hrs □>8hr, <24 hrs, □>24 hrs			
Short Hold Time Analysis (<72 hr)?	☐Yes	□No		Fecal Coliform HPC Total Coliform/E coli BOD/cBOD Hex Chrome Turbidity Nitrate Nitrite Torthophos Other			
Rush Turn Around Time Requested?	□Yes	No		6.			
Sufficient Volume?	✓Yes	□No		7.			
Correct Containers Used?	Yes	□ую		8.			
-Pace Containers Used?	□Yes	<u>Z</u> N₀					
Containers Intact?	Yes	□No		9.			
Field Filtered Volume Received for Dissolved Tests? Is sufficient information available to reconcile the	☐Yes	No	⊠N/A	10. Is sediment visible in the dissolved container? Yes No 11. If no, write ID/ Date/Time on Container Below: See Exception			
samples to the COC? Matrix: ☐ Water ☐ Soil ☐ Oil ☐ Other-	Yes	□No		11. If no, write ID/ Date/Time on Container Below: See Exception LENV-FRM-MIN4-0142			
All containers needing acid/base preservation have	∐Yes	□No	□⁄N/A	12. Sample #			
been checked? All containers needing preservation are found to be in							
compliance with EPA recommendation? (HNO ₃ , H ₂ SO ₄ , <2pH, NaOH >9 Sulfide, NaOH>10 Cyanide)	∐Yes	□No	⊠N/A	☐ NaOH ☐ HNO₃ ☐H₂SO₄ ☐Zinc Acetate			
,				Positive for Res. Yes See Exception			
Exceptions: VOA, Coliform, TOC/DOC Oil and Grease,	Yes	□No	□n/a	Chlorine? No pH Paper Lot# ENV-FRM-MIN4-0142			
DRO/8015 (water) and Dioxin PFAS				Res. Chlorine 0-6 Roll 0-6 Strip 0-14 Strip			
Headspace in Methyl Mercury Container?	□Yes	□No	™ ✓N/A				
Extra labels present on soil VOA or WIDRO containers?	□Yes	□No	⊠N/A	13. See Exception			
Headspace in VOA Vials (greater than 6mm)?	Yes	□No	[⊿N/A	ENV-FRM-MIN4-0140			
Trip Blank Present? Trip Blank Custody Seals Present?	□Yes □Yes	∏No ∐No	⊠N/A ⊠N/A	14. Pace Trip Blank Lot # (if purchased):			
· · · · · · · · · · · · · · · · · · ·			ши/н				
CLIENT NOTIFICATION/RESOLUTION Person Contacted:				Field Data Required? Yes No Date/Time:			
Comments/Resolution:				Date/Time:			
	0 1		3-11-1				
Project Manager Review:	rich	ardo	ion	Date: 3-25-22			
Note: Whenever there is a discrepancy affecting North Carol	Project Manager Review:						

of hold, incorrect preservative, out of temp, incorrect containers).

Document Name:

Sample Condition Upon Receipt (SCUR) Exception Form

Document No.: ENV-FRM-MIN4-0142 Rev.01

Document Revised: 04Jun2020 Page 1 of 1

Pace Analytical Services - Minneapolis

SCUR Exceptions: Workorder #: 10602041 Container PM Notified? Yes No # of **Out of Temp Sample IDs Containers** Type If yes, indicate who was contacted/date/time. If no, indicate reason why. Multiple Cooler Project? Yes No If you answered yes, fill out information to the left. No Temp Blank **Read Temp Corrected Temp** Average Temp 2.0 .6 6 17 1.0 **Issue Type:** Container # of **Tracking Number/Temperature** Sample ID Type **Containers pH Adjustment Log for Preserved Samples** Amoun Type of Upon Date Time t Added Lot# рΗ In Compliance Sample ID Preserv. Receipt Adjusted Adjusted (mL) Added After after addition? Initials Yes No Yes No Yes No Yes No

Comments:

Reporting Flags

- A = Reporting Limit based on signal to noise (EDL)
- B = Less than 10x higher than method blank level
- C = Result obtained from confirmation analysis
- D = Result obtained from analysis of diluted sample
- E = Exceeds calibration range
- I = Interferencepresent
- J = Estimated value
- L = Suppressive interference, analyte may be biased low
- Nn = Value obtained from additional analysis
- P = PCDEInterference
- R = Recovery outside target range
- S = Peak saturated
- U = Analyte not detected
- V = Result verified by confirmation analysis
- X = %D Exceeds limits
- Y = Calculated using average of daily RFs
- * = SeeDiscussion

REPORT OF LABORATORY ANALYSIS

Appendix B

Sample Analysis Summary

Tel: 612-607-1700 Fax: 612-607-6444

Method 8290 Sample Analysis Results

Client - Weck Laboratories Inc

Client's Sample ID 2C22092-01/ CWRF Effluent

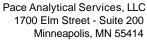
Lab Sample ID 10602041001 Filename U220331A_04 Injected By SMT

Total Amount Extracted 989 mL Matrix Water % Moisture NA Dilution NA

Dry Weight Extracted NA Collected 03/22/2022 07:11 ICAL ID U220123 Received 03/25/2022 08:50 CCal Filename(s) U220331A_01 & U220331A_17 Extracted 03/29/2022 13:10 Method Blank ID BLANK-97697 Analyzed 03/31/2022 10:29

Native Isomers	Conc pg/L	EMPC pg/L	EDL pg/L	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		0.68 0.68	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	90 88 89
2,3,7,8-TCDD Total TCDD	ND ND		1.4 1.4	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	104 118 96
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND	 	1.7 0.68 0.68	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	52 84 83 90
1,2,3,7,8-PeCDD Total PeCDD	ND ND		1.7 1.7	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00	100 82 69
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND ND		1.1 1.1 1.9	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	89 78
1,2,3,7,8,9-HxCDF Total HxCDF	ND ND		1.4 1.1	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND	 	2.2 2.5 2.7 2.2	2,3,7,8-TCDD-37Cl4	0.20	100
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND ND	 	3.4 13 3.4	Total 2,3,7,8-TCDD Equivalence: 0.00 pg/L (Lower-bound - Using 2005	WHO Facto	ors)
1,2,3,4,6,7,8-HpCDD Total HpCDD	ND ND		2.7 2.7			
OCDF OCDD	ND ND		3.8 6.4			

 $Conc = Concentration \ (Totals \ include \ 2,3,7,8-substituted \ isomers).$


EMPC = Estimated Maximum Possible Concentration

EDL = Estimated Detection Limit

ND = Not Detected NA = Not Applicable

NC = Not Calculated

REPORT OF LABORATORY ANALYSIS

Tel: 612-607-1700 Fax: 612-607-6444

Method 8290 Blank Analysis Results

Lab Sample Name Lab Sample ID Filename **Total Amount Extracted**

<u> Pace Analytical</u>

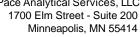
ICAL ID CCal Filename(s) **DFBLKDK** BLANK-97697 U220331A_03 1000 mL U220123

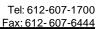
U220331A_01 & U220331A_17

Matrix Water Dilution NA

Extracted 03/29/2022 13:10 Analyzed 03/31/2022 09:42

Injected By **SMT**


Native Isomers	Conc pg/L	EMPC pg/L	EDL pg/L	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		1.1 1.1	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	75 69 85
2,3,7,8-TCDD Total TCDD	ND ND		1.7 1.7	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	95 100 81
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		0.94 0.70 0.70	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	45 77 66 83
1,2,3,7,8-PeCDD Total PeCDD	ND ND		1.7 1.7	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	92 82 53
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND ND		1.6 3.2 2.0	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	81 66
1,2,3,7,8,9-HxCDF Total HxCDF	ND ND		2.4 1.6	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND	 	2.2 1.7 2.6 1.7	2,3,7,8-TCDD-37Cl4	0.20	77
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND ND	 	2.8 9.7 2.8	Total 2,3,7,8-TCDD Equivalence: 0.00 pg/L (Lower-bound - Using 2005	WHO Facto	ors)
1,2,3,4,6,7,8-HpCDD Total HpCDD	ND ND		3.8 3.8			
OCDF OCDD	ND ND		5.6 6.3			


Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

EDL = Estimated Detection Limit

REPORT OF LABORATORY ANALYSIS

Method 8290 Laboratory Control Spike Results

Lab Sample ID Filename **Total Amount Extracted**

<u>Pace Analytica</u>

ICAL ID CCal Filename(s) Method Blank ID

LCS-97698 U220331A_11 1000 mL U220123

U220331A_01 & U220331A_17 BLANK-97697

Matrix Dilution Extracted

Analyzed

Water NA 03/29/2022 13:10

03/31/2022 15:55

Injected By	SMT
-------------	-----

Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.20	0.18	92	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.0 2.0 2.0	83 82 91
2,3,7,8-TCDD Total TCDD	0.20	0.20	99	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.0 2.0 2.0 2.0	100 113 98
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.0 1.0	0.86 0.85	86 85	1,2,3,6,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.0 2.0 2.0 2.0 2.0	96 46 81 79 86
1,2,3,7,8-PeCDD Total PeCDD	1.0	0.87	87	1,2,3,4,7,6-11xCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.0 2.0 2.0 2.0	101 78 59
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	1.0 1.0 1.0 1.0	0.86 0.87 0.96 0.92	86 87 96 92	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.0 4.0 2.0	82 67 NA
Total HxCDF 1,2,3,4,7,8-HxCDD	1.0	0.99	99	1,2,3,7,8,9-HxCDD-13C 2,3,7,8-TCDD-37Cl4	2.0 0.20	NA 96
1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.0 1.0	0.87 0.88	87 88			
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	1.0 1.0	0.97 0.91	97 91			
1,2,3,4,6,7,8-HpCDD Total HpCDD	1.0	0.90	90			
OCDF OCDD	2.0 2.0	1.9 2.2	96 110			

Qs = Quantity Spiked Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent) R = Recovery outside of target range

Y = RF averaging used in calculations Nn = Value obtained from additional analysis

NA = Not Applicable * = See Discussion

REPORT OF LABORATORY ANALYSIS

Appendix B – Significant Industrial User Listing

Encina Wastewater Authority	Reporting Quarters	Number of Inspections	Agency Monitoring	Self- Monitoring	Limit Violations	Reporting Quarter Status	Flow Rat (GPD)
Bachem Americas, Inc	1		1	2	0	NC	
1271 Avenida Chelsea	2		1	1	0	NC	
Vista, CA 92081	3	1	1	2	0	С	
40 CFR Part 439, Subpart C PSNS	4	1	1	1	0	С	
Pretreatment: settling, pH neutralization, hauling							2,100
Carlsbad Technology	1		2	2	0	С	
5923 Balfour Court	2	1	2	2	0	С	
Carlsbad, CA 92008	3		2	2	0	С	
40 CFR Part 439, Subpart D PSNS	4		2	0	0	NC	
Pretreatment: pH neutralization							1,365
Captek Softgel	1		1	4	5	SNC	
2710 Progress Street	2	4	1	2	3	SNC	1
/ista, CA 92081	3		1	1	2	SNC	1
10 CFR Part 439, Subpart D PSNS	4	1	1	4	5	SNC	
PT: pH neutralization, settling/clarifier, oil skimmer		-	-	-	-	-	30,00
Captek was in Chronic SNC for all four evaluation p	eriods for BOD. S	See Enforcement	Summary and En	orcement Activiti	es section of the Ann	ual Pretreatment R	eport for
additional details.							
			1	2	1	SNC	
CINTAS CORPORATION	1				'	0.10	
	2	3	1	1	3	SNC	
160 West California Avenue		3					
460 West California Avenue Vista, CA 92084	2	3	1	1	3	SNC	
460 West California Avenue Vista, CA 92084 Industrial Laundry - Local Limits Pretreatment: settling, dissolved air flotation Cintas was in Chronic SNC in the first evaluation pe	2 3 4 eriod for BOD and	in TRC SNC in s	1 4 1	1 2 1	3 2 0	SNC NC NC	
460 West California Avenue //ista, CA 92084 ndustrial Laundry - Local Limits Pretreatment: settling, dissolved air flotation Cintas was in Chronic SNC in the first evaluation pe Activities section of the Annual Pretreatment Report	2 3 4 eriod for BOD and	in TRC SNC in s	1 4 1	1 2 1	3 2 0	SNC NC NC	
460 West California Avenue Vista, CA 92084 Industrial Laundry - Local Limits Pretreatment: settling, dissolved air flotation Cintas was in Chronic SNC in the first evaluation pe Activities section of the Annual Pretreatment Report	2 3 4 vriod for BOD and for additional de	in TRC SNC in s	1 4 1 econd evaluation	1 2 1 period for BOD. \$	3 2 0 See Enforcement Sur	SNC NC NC	
460 West California Avenue Vista, CA 92084 Industrial Laundry - Local Limits Pretreatment: settling, dissolved air flotation Cintas was in Chronic SNC in the first evaluation pe Activities section of the Annual Pretreatment Report	2 3 4 eriod for BOD and for additional de	in TRC SNC in s	1 4 1 econd evaluation	1 2 1 period for BOD. \$	3 2 0 0 See Enforcement Sur	SNC NC NC nmary and Enforce	
460 West California Avenue Vista, CA 92084 Industrial Laundry - Local Limits Pretreatment: settling, dissolved air flotation Cintas was in Chronic SNC in the first evaluation pe Activities section of the Annual Pretreatment Report Glanbia 2840 Loker Avenue East, Suite #101 Carlsbad, CA 92010	2 3 4 eriod for BOD and for additional de	in TRC SNC in stails.	1 4 1 1 econd evaluation	1 2 1 1 period for BOD. \$ 1 1 1 1 1	3 2 0 0 See Enforcement Sur	SNC NC NC mmary and Enforce C C NC	
460 West California Avenue Vista, CA 92084 Industrial Laundry - Local Limits Pretreatment: settling, dissolved air flotation Cintas was in Chronic SNC in the first evaluation pe Activities section of the Annual Pretreatment Report Glanbia 2840 Loker Avenue East, Suite #101 Carlsbad, CA 92010 40 CFR Part 439, Subpart D PSNS	2 3 4 eriod for BOD and for additional de	in TRC SNC in stails.	1 4 1 econd evaluation	1 2 1 1 period for BOD. \$	3 2 0 0 See Enforcement Sur	SNC NC NC nmary and Enforce	ment
460 West California Avenue Vista, CA 92084 Industrial Laundry - Local Limits Pretreatment: settling, dissolved air flotation Cintas was in Chronic SNC in the first evaluation pe Activities section of the Annual Pretreatment Report Glanbia 2840 Loker Avenue East, Suite #101 Carlsbad, CA 92010 40 CFR Part 439, Subpart D PSNS Pretreatment: pH neutralization, settling/clarifier Hollandia	2 3 4 eriod for BOD and for additional de	in TRC SNC in stails.	1 4 1 1 econd evaluation	1 2 1 1 period for BOD. \$ 1 1 1 1 1	3 2 0 0 See Enforcement Sur	SNC NC NC mmary and Enforce C C NC	60,000 ment 650
460 West California Avenue Vista, CA 92084 Industrial Laundry - Local Limits Pretreatment: settling, dissolved air flotation Cintas was in Chronic SNC in the first evaluation pe Activities section of the Annual Pretreatment Report Glanbia 2840 Loker Avenue East, Suite #101 Carlsbad, CA 92010 40 CFR Part 439, Subpart D PSNS Pretreatment: pH neutralization, settling/clarifier Hollandia 622 East Mission Road	2 3 4 Priod for BOD and for additional de	in TRC SNC in stails.	1 4 1 1 econd evaluation	1 2 1 1 period for BOD. \$ 1 1 1 1 1 1 1 1 1	3 2 0 0 See Enforcement Sur 0 0 1 1 1 1	SNC NC NC NC NC NC NC C C NC NC C C C C	ment
460 West California Avenue Vista, CA 92084 Industrial Laundry - Local Limits Pretreatment: settling, dissolved air flotation Cintas was in Chronic SNC in the first evaluation pe Activities section of the Annual Pretreatment Report Glanbia 2840 Loker Avenue East, Suite #101 Carlsbad, CA 92010 40 CFR Part 439, Subpart D PSNS Pretreatment: pH neutralization, settling/clarifier Hollandia 622 East Mission Road San Marcos, CA 92069	2 3 4 Priod for BOD and for additional de	in TRC SNC in stails.	1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 2 1 1 period for BOD. \$ 1 1 1 1 1 1 1 1 1	3 2 0 See Enforcement Sur 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SNC NC NC NC NC NC NC C C C C C C C C C	ment
460 West California Avenue Vista, CA 92084 Industrial Laundry - Local Limits Pretreatment: settling, dissolved air flotation Cintas was in Chronic SNC in the first evaluation pe Activities section of the Annual Pretreatment Report Slanbia 2840 Loker Avenue East, Suite #101 Carlsbad, CA 92010 40 CFR Part 439, Subpart D PSNS Pretreatment: pH neutralization, settling/clarifier Hollandia 622 East Mission Road San Marcos, CA 92069 Dairy & Creamery - Local Limits	2 3 4 eriod for BOD and for additional de	in TRC SNC in stails.	1 4 1 1 econd evaluation	1 2 1 1 period for BOD. \$ 1 1 1 1 1 1 1 1 1	3 2 0 0 See Enforcement Sur 0 0 1 1 1 1	SNC NC NC NC NC NC NC C C NC NC C C C C	ment 650
CINTAS CORPORATION 460 West California Avenue Vista, CA 92084 Industrial Laundry - Local Limits Pretreatment: settling, dissolved air flotation Cintas was in Chronic SNC in the first evaluation pe Activities section of the Annual Pretreatment Report Glanbia 2840 Loker Avenue East, Suite #101 Carlsbad, CA 92010 40 CFR Part 439, Subpart D PSNS Pretreatment: pH neutralization, settling/clarifier Hollandia 622 East Mission Road San Marcos, CA 92069 Dairy & Creamery - Local Limits PT: flow equalization, pH neutralization, MBBRs, DA	2 3 4 eriod for BOD and for additional de	in TRC SNC in stails.	1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 2 1 1 period for BOD. \$ 1 1 1 1 1 1 1 1 1	3 2 0 See Enforcement Sur 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SNC NC NC NC NC NC NC C C C C C C C C C	ment 650
460 West California Avenue Vista, CA 92084 Industrial Laundry - Local Limits Pretreatment: settling, dissolved air flotation Cintas was in Chronic SNC in the first evaluation pe Activities section of the Annual Pretreatment Report Glanbia 2840 Loker Avenue East, Suite #101 Carlsbad, CA 92010 40 CFR Part 439, Subpart D PSNS Pretreatment: pH neutralization, settling/clarifier Hollandia 622 East Mission Road San Marcos, CA 92069 Dairy & Creamery - Local Limits PT: flow equalization, pH neutralization, MBBRs, DA PT: flow equalization, pH neutralization, MBBRs, DA	2 3 4 Priod for BOD and for additional de	in TRC SNC in stails.	1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 2 0 0 See Enforcement Sur 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SNC NC NC NC NC NC NC NC C C C C C C C C	ment 650
460 West California Avenue Vista, CA 92084 Industrial Laundry - Local Limits Pretreatment: settling, dissolved air flotation Cintas was in Chronic SNC in the first evaluation pe Activities section of the Annual Pretreatment Report Glanbia 2840 Loker Avenue East, Suite #101 Carlsbad, CA 92010 40 CFR Part 439, Subpart D PSNS Pretreatment: pH neutralization, settling/clarifier Hollandia 622 East Mission Road San Marcos, CA 92069 Dairy & Creamery - Local Limits PT: flow equalization, pH neutralization, MBBRs, DA HRE Performance	2 3 4 eriod for BOD and a for additional de 1 2 3 4 1 2 3 4 AF	in TRC SNC in stails.	1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 2 0 See Enforcement Sur 0 0 1 1 1	SNC NC NC NC NC NC NC NC C C C C C C C C	ment 650
460 West California Avenue Vista, CA 92084 Industrial Laundry - Local Limits Pretreatment: settling, dissolved air flotation Cintas was in Chronic SNC in the first evaluation pe Activities section of the Annual Pretreatment Report Glanbia 2840 Loker Avenue East, Suite #101 Carlsbad, CA 92010 40 CFR Part 439, Subpart D PSNS Pretreatment: pH neutralization, settling/clarifier Hollandia 622 East Mission Road San Marcos, CA 92069 Dairy & Creamery - Local Limits PT: flow equalization, pH neutralization, MBBRs, DA HRE Performance 2611 Commerce Way, Suite D	2 3 4 eriod for BOD and a for additional de 1 2 3 4 1 2 3 4 AF	in TRC SNC in sitails.	1 4 1 1 econd evaluation 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 2 0 See Enforcement Sur 0 0 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1	SNC NC N	ment
460 West California Avenue Vista, CA 92084 Industrial Laundry - Local Limits Pretreatment: settling, dissolved air flotation Cintas was in Chronic SNC in the first evaluation pe Activities section of the Annual Pretreatment Report Glanbia 2840 Loker Avenue East, Suite #101 Carlsbad, CA 92010 40 CFR Part 439, Subpart D PSNS Pretreatment: pH neutralization, settling/clarifier Hollandia 622 East Mission Road San Marcos, CA 92069 Dairy & Creamery - Local Limits PT: flow equalization, pH neutralization, MBBRs, DA HRE Performance 2611 Commerce Way, Suite D Vista, CA 92081	2 3 4 eriod for BOD and for additional de 1 2 3 4 1 2 3 4 AF	in TRC SNC in stails.	1 4 1 1 econd evaluation 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 2 0 See Enforcement Sur 0 0 1 1 1 1 1 1 0	SNC NC N	ment 650
460 West California Avenue Vista, CA 92084 Industrial Laundry - Local Limits Pretreatment: settling, dissolved air flotation Cintas was in Chronic SNC in the first evaluation pe Activities section of the Annual Pretreatment Report Glanbia 2840 Loker Avenue East, Suite #101 Carlsbad, CA 92010 40 CFR Part 439, Subpart D PSNS Pretreatment: pH neutralization, settling/clarifier Hollandia 622 East Mission Road San Marcos, CA 92069 Dairy & Creamery - Local Limits	2 3 4 eriod for BOD and a for additional de 1 2 3 4 1 2 3 4 AF	in TRC SNC in sitails.	1 4 1 1 econd evaluation 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 2 0 See Enforcement Sur 0 0 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1	SNC NC N	ment 650

Encina Wastewater Authority	Reporting Quarters	Number of Inspections	Agency Monitoring	Self- Monitoring	Limit Violations	Reporting Quarter Status	Flow Ra (GPD)
lughes Circuits	1		1	2	0	С	
40 South Pacific Street	2		2	2	0	С	
San Marcos, CA 92078	3	1	1	2	0	С	
40 CFR Part 433 PSNS	4		1	1	0	NC	
Pretreatment: pH adjustment, precipitation & settling							14,50
All Required certifications were provided.							
lonis Manufacturing	1				0	С	
2282 Faraday Avenue	2				0	С	
Carlsbad, CA 92008	3		1	1	0	С	
40 CFR Part 439, Subpart C PSNS	4	1			0	С	
Pretreatment: hauling							380
Javo Beverage Company	1				0	С	<u> </u>
1311 Specialty Drive	2	1			0	С	1
Vista, CA 92081	3	İ		1	0	C	1
Beverage Manufacturing- Local Limits	4	1	1	1	1	NC	1
Pretreatment: pH neutralization, clarifier, hauling	, T	1		'	'		43,00
	1	I	1	1	0	С]
							1
1165 Linda Vista Drive, Suite #106	2		1	1	0	С	J
1165 Linda Vista Drive, Suite #106		1	1	1 1	0	C	
1165 Linda Vista Drive, Suite #106 San Marcos, CA 92078	2	1					
1165 Linda Vista Drive, Suite #106 San Marcos, CA 92078 40 CFR Part 433 PSNS Pretreatment: pH neutralization, hauling	2	1	1	1	0	С	360
Metal Etch Services 1165 Linda Vista Drive, Suite #106 San Marcos, CA 92078 40 CFR Part 433 PSNS Pretreatment: pH neutralization, hauling All Required certifications were provided. Natel 6350 Palomar Oaks Court Carlsbad, CA 92011 40 CFR Part 433 PSNS	2	1	1	1	0	С	360
1165 Linda Vista Drive, Suite #106 San Marcos, CA 92078 40 CFR Part 433 PSNS Pretreatment: pH neutralization, hauling All Required certifications were provided. Natel 6350 Palomar Oaks Court Carlsbad, CA 92011	2 3 4		1 1 1 1 1	1 1 2 1 1	0 0 0	C C C C	
1165 Linda Vista Drive, Suite #106 San Marcos, CA 92078 40 CFR Part 433 PSNS Pretreatment: pH neutralization, hauling All Required certifications were provided. Natel 6350 Palomar Oaks Court Carlsbad, CA 92011 40 CFR Part 433 PSNS Pretreatment: hauling	2 3 4		1 1 1 1 1	1 1 2 1 1	0 0 0	C C C C	
1165 Linda Vista Drive, Suite #106 San Marcos, CA 92078 40 CFR Part 433 PSNS Pretreatment: pH neutralization, hauling All Required certifications were provided. Natel 6350 Palomar Oaks Court Carlsbad, CA 92011 40 CFR Part 433 PSNS Pretreatment: hauling All Required certifications were provided.	2 3 4		1 1 1 1 1	2 1 1	0 0 0 0 0	C C C C C	
1165 Linda Vista Drive, Suite #106 San Marcos, CA 92078 40 CFR Part 433 PSNS Pretreatment: pH neutralization, hauling All Required certifications were provided. Natel 3350 Palomar Oaks Court Carlsbad, CA 92011 40 CFR Part 433 PSNS Pretreatment: hauling All Required certifications were provided.	2 3 4	1	1 1 1 1 1 1	1 1 1 1 1	0 0 0 0 0 0	C C C C C	
1165 Linda Vista Drive, Suite #106 San Marcos, CA 92078 40 CFR Part 433 PSNS Pretreatment: pH neutralization, hauling All Required certifications were provided. Natel 3350 Palomar Oaks Court Carlsbad, CA 92011 40 CFR Part 433 PSNS Pretreatment: hauling All Required certifications were provided.	2 3 4		1 1 1 1 1 1	1 1 1 1 1 1	0 0 0 0 0 0	C C C C C	500
1165 Linda Vista Drive, Suite #106 San Marcos, CA 92078 40 CFR Part 433 PSNS Pretreatment: pH neutralization, hauling All Required certifications were provided. Natel 6350 Palomar Oaks Court Carlsbad, CA 92011 40 CFR Part 433 PSNS Pretreatment: hauling All Required certifications were provided. Natural Alternatives 1215 Park Center Drive Vista, CA 92081	2 3 4	1	1 1 1 1 1 1 1	1 1 1 1 1 1 2 2 2 2	0 0 0 0 0 0 0	C C C C C C C	
1165 Linda Vista Drive, Suite #106 San Marcos, CA 92078 40 CFR Part 433 PSNS Pretreatment: pH neutralization, hauling All Required certifications were provided. Natel 6350 Palomar Oaks Court Carlsbad, CA 92011 40 CFR Part 433 PSNS Pretreatment: hauling All Required certifications were provided. Natural Alternatives 1215 Park Center Drive Vista, CA 92081 40 CFR Part 439, Subpart D PSNS	2 3 4	1	1 1 1 1 1 1	1 1 1 1 1 1	0 0 0 0 0 0	C C C C C	500
1165 Linda Vista Drive, Suite #106 San Marcos, CA 92078 40 CFR Part 433 PSNS Pretreatment: pH neutralization, hauling All Required certifications were provided. Natel 6350 Palomar Oaks Court Carlsbad, CA 92011 40 CFR Part 433 PSNS Pretreatment: hauling All Required certifications were provided. Natural Alternatives 1215 Park Center Drive Vista, CA 92081 40 CFR Part 439, Subpart D PSNS	2 3 4	1	1 1 1 1 1 1 1	1 1 1 1 1 1 2 2 2 2	0 0 0 0 0 0 0	C C C C C C C	500
1165 Linda Vista Drive, Suite #106 San Marcos, CA 92078 40 CFR Part 433 PSNS Pretreatment: pH neutralization, hauling All Required certifications were provided. Natel 6350 Palomar Oaks Court Carlsbad, CA 92011 40 CFR Part 433 PSNS Pretreatment: hauling All Required certifications were provided. Natural Alternatives 1215 Park Center Drive Vista, CA 92081 40 CFR Part 439, Subpart D PSNS Pretreatment: settling/clarifier	2 3 4	1	1 1 1 1 1 1 1	1 1 1 1 1 1 2 2 2 2	0 0 0 0 0 0 0	C C C C C C C	500
Natural Alternatives Natural Alternatives	2 3 4	1	1 1 1 1 1 1 1	2 1 1 1 1	0 0 0 0 0 0 0		500
1165 Linda Vista Drive, Suite #106 San Marcos, CA 92078 40 CFR Part 433 PSNS Pretreatment: pH neutralization, hauling All Required certifications were provided. Natel 6350 Palomar Oaks Court Carlsbad, CA 92011 40 CFR Part 433 PSNS Pretreatment: hauling All Required certifications were provided. Natural Alternatives 1215 Park Center Drive Vista, CA 92081 40 CFR Part 439, Subpart D PSNS Pretreatment: settling/clarifier	2 3 4	1 1	1 1 1 1 1 1 1 1 2 2 2 2 2 2	2 1 1 1 1 1 1 2 2 2 2 2 2	0 0 0 0 0 0 0 0		
1165 Linda Vista Drive, Suite #106 San Marcos, CA 92078 40 CFR Part 433 PSNS Pretreatment: pH neutralization, hauling All Required certifications were provided. Natel 6350 Palomar Oaks Court Carlsbad, CA 92011 40 CFR Part 433 PSNS Pretreatment: hauling All Required certifications were provided. Natural Alternatives 1215 Park Center Drive Vista, CA 92081 40 CFR Part 439, Subpart D PSNS Pretreatment: settling/clarifier Natural Alternatives Fretreatment: settling/clarifier	2 3 4	1 1 1	1 1 1 1 1 1 1 1 1 2 2 2 2 2 2	2 1 1 1 1 1 1 2 2 2 2 2 2	0 0 0 0 0 0 0 0		5000
1165 Linda Vista Drive, Suite #106 San Marcos, CA 92078 40 CFR Part 433 PSNS Pretreatment: pH neutralization, hauling All Required certifications were provided. Natel 6350 Palomar Oaks Court Carlsbad, CA 92011 40 CFR Part 433 PSNS Pretreatment: hauling All Required certifications were provided. Natural Alternatives 1215 Park Center Drive Vista, CA 92081 40 CFR Part 439, Subpart D PSNS Pretreatment: settling/clarifier Natural Alternatives 5928 Farnsworth Court	2 3 4	1 1	1 1 1 1 1 1 1 1 2 2 2 2 2 2	2 1 1 1 1 1 1 2 2 2 2 2 2	0 0 0 0 0 0 0 0		500

Premier Nutra Pharma 6800 Newton Dr Carlsbad, CA 92008 60 CFR Part 439, Subpart D PSNS Pretreatment: settling/clarifier			Agency Monitoring	Self- Monitoring	Limit Violations	Reporting Quarter Status	Flow Rat (GPD)
Carlsbad, CA 92008 10 CFR Part 439, Subpart D PSNS Pretreatment: settling/clarifier	1	3	0	0	0	С	
10 CFR Part 439, Subpart D PSNS Pretreatment: settling/clarifier	2		0	0	0	NC	
Pretreatment: settling/clarifier	3	1	2	0	0	SNC	
	4	1	1	2	0	NC	
		<u>u</u> :					2,10
n SNC for submitting the 90-Day Compliance Report	250 days late.	The report was u	ue on August 3, 2	2022.			
Primarch Manufacturing	1		1	1	0	С	
211 Liberty Way, Suite A	2	1	1	1	0	С	
/ista, CA 92083	3		1	1	0	SNC	
10 CFR Part 439, Subpart D PSNS	4		1	1	1	NC	
n TRC SNC for a single acetone monthly average vio Annual Pretreatment Report for additional details.	lation (Q4 202	2) in the fourth ev	aluation period. S	See Enforcement	Summary and Enforce	ement Activities se	ction of the
Prudential	1		1	1	0	С	
2485 Ash Street	2	1	1	1	0	С	1
/ista, CA 92081	3		1	1	1	NC	1
ndustrial Laundry - Local Limits	4	1	2	1	0	С	1
PT: flow equalization, pH neutralization, settling, DAF					·	Ü	70,00
SeaSpine 5770 Armada Drive	1 2		2	2	0	C C	
Carlsbad, CA 92008	3	1	1	1	0	С	
IO CFR Part 433 PSNS	4		1	1	0	С	
Pretreatment: hauling							295
All Required certifications were provided.	1	1	2	1	0	С	
ielect Supplements		1 '	1		-	-	_
Select Supplements 2390 Oak Ridge Way		•		1	Ω	C.	
2390 Oak Ridge Way	2	1	_	1	0	C	4
2390 Oak Ridge Way /ista, CA 92081	2	1	1	1	0	С	
2390 Oak Ridge Way /ista, CA 92081 10 CFR Part 439, Subpart D PSNS	2	1	_	_			4 30
2390 Oak Ridge Way /ista, CA 92081	2	1	1	1	0	С	4,30
2390 Oak Ridge Way //ista, CA 92081 10 CFR Part 439, Subpart D PSNS Pretreatment: settling/clarifier	2 3 4		1 1	1 1	0 2	C NC	4,30
2390 Oak Ridge Way //ista, CA 92081 60 CFR Part 439, Subpart D PSNS Pretreatment: settling/clarifier //ERSUM MATERIALS US, LLC. 1969 Palomar Oaks Way	2 3 4	1	1 1 1 1	1 1 1 1	0 2	C NC	4,30
2390 Oak Ridge Way //ista, CA 92081 60 CFR Part 439, Subpart D PSNS Pretreatment: settling/clarifier //ERSUM MATERIALS US, LLC. 1969 Palomar Oaks Way Carlsbad, CA 92011	2 3 4		1 1 1 1 1	1 1 1 1 1	0 2 0 0 0	C NC	4,30
2390 Oak Ridge Way //ista, CA 92081 60 CFR Part 439, Subpart D PSNS Pretreatment: settling/clarifier //ERSUM MATERIALS US, LLC. 1969 Palomar Oaks Way	2 3 4		1 1 1 1	1 1 1 1	0 2	C NC	4,30

EC# Company/Industry	File Type	Date	Notes	Penalty	NR Costs
22-0001 Cintas	NOV	1/6/2022	BOD (1 in 12 months) & TSS (1 in 12 Months)	0	100
22-0012 Cintas	NOV	2/7/2022	BOD (2 in 12 months) FTN (1 in 12 months)	350	100
22-0013 Cintas	NOV	2/7/2022	BOD (3 in 12 months) & FTN (2 in 12 months)	1,500.00	100
22-0014 HRE	NOV	2/8/2022	O/G (1 in12 months)	100.00	100
22-0015 SeaSpine	NOV	2/10/2022	Failed to monitor (1 in 12 months)	1,000.00	100.00
22-0016 Captek	NOV	2/10/2021	BOD (2 in 12 Months) + FTN (1 in 12 months)	350.00	100.00
22-0017 Captek	NOV	2/10/2021	BOD (3 in 12 months) + FTN (2 in 12 months)	1,500.00	100.00
22-0028 Fresh Creative Foods	NOV	4/11/2022	O/G (1 in 12 months)	0.00	100.00
22-0029 Jif Pack	NOV	4/11/2022	BOD and FTN (1 in 12 months)	100.00	100.00
22-0031 Captek	NOV/CS/CM	4/15/2022	NOV for Compliance Meeting Scheduled April 29, Compliance Schedule Issued	0.00	100.00
22-0032 Captek	NOV	4/15/2022	Violations (4-6BOD, 2FTN, & >30 days late Report (x2))	4,250.00	100.00
22-0034 Cintas Corporation	NOV	4/26/2022	Late Report >30 Days	250.00	100.00
22-0035 Cintas Corporation	NOV		BOD (4 in 12 months)	250.00	100.00
22-0036 HRE	NOV		1st Late Report (>30 Days Late)	250.00	100.00
22-0038 HRE	NOV		Failure to Report Additional Monitoring (1 in 12 months)	250.00	100.00
22-0039 Captek	NOV		Violations (7BOD & 3FTN)	2,000.00	100.00
22-0042 Fresh Creative Foods	NOV		Ph (5.4), O/G 460 mg/l, FTN (1x)	250.00	200.00
22-0048 Jif Pack	NOV		O/G (1 in 12 months)	0.00	100.00
22-0050 Cintas	NOV		BOD (5 in 12 months)	1,000.00	100.00
22-0051 Captek	NOV		BOD (8, 9, 10 in 12 months)	3,000.00	100.00
22-0056 American Meta Pack Company	NOV		Late CSR Report	100.00	100.00
22-0057 Anything Liquid	NOV		Late CSR Report	100.00	100.00
22-0058 Bachem	NOV		Q1 Di + Tri ethylamine invalid analysis results (RI > Federal Limit). Q2 Bachem improper Sample type TSS	0.00	100.00
22-0059 HRE	NOV		Late report (2 in 12 months), O/G Violation (2 in 12 months), FTN (2 in 12 months)	1,250.00	100.00
22-0061 Jif-Pak	NOV		OG (2 in 12 months)	250.00	100.00
22-0062 Fresh Creative Foods	NOV		BOD (1 in 12 months)	250.00	100.00
22-0063 Cintas	NOV		BOD (6 in 12 months)	2,000.00	100.00
22-0064 Cintas	NOV		BOD (7 in 12 months)	1,000.00	100.00
22-0065 Cintas	NOV		Complete Failure to Monitor Q2	1,000.00	100.00
22-0066 Lancer Orthodontics	NOV		Late CSR Report	100.00	100.00
22-0068 Cintas	NOV		Late Report (1 in 12 months)	100.00	100.00
22-0069 Prudential	NOV		TSS (1 in 12 months)	0.00	100.00
22-0070 Premier Nutra Pharma	NOV		Complete Failure to Monitor Q2, Late Report, Incomplete Report	2,000.00	100.00
22-0072 Cintas	NOV		NOV BOD (8 of 12 months)	1,000.00	100.00
22-0073 Cintas	NOV/CS/CM		NOV for Compliance Meeting Scheduled Sept 8, 2022, Compliance Schedule Issued	0.00	100.00
22-0077 Cintas	NOV		O/G (1 in 12 months)	0.00	100.00
22-0078 Captek	NOV		BOD (11 in 12 months)	1,000.00	100.00
22-0079 HRE	NOV		O/G (3 in 12 months) & VFTN (3 in 12 months)) addl. Monitoring	2,000.00	100.00
22-0080 Jif-Pak	NOV		O/G (Checkback for 22-0061)(3 in 12 months)	1,000.00	100.00
22-0084 Premier Nutra Pharma	NOV		Complete Failure to Monitor Q2, >30 Days Late Report, Incomplete Report (1 in 12 months)	2,000.00	100.00
22-0086 Captek	NOV		BOD (12 in 12 Months) and 4FTN	2,000.00	100.00
22-0087 Jif Pak	NOV		O/G (4 in 12 months)	250.00	100.00
22-0088 Jif Pak	NOV		BOD (2 in 12 months)	1,000.00	100.00
22-0090 HRE	NOV		O/G (4 in 12 months) & Late Report (3 in 12 months)	2,000.00	100.00
22-0092 Premier Nutra Pharma	NOV		Illegal discharge of Fed Reg IWW without a Permit	11,200.00	0.00
22-0093 SAFC	NOV		Illegal discharge of Fed Reg IWW without a Permit	33,750.00	0.00
22-0098 Select Supplements	NOV		pH Violation	-	100.00
soss salest supplements		, _0, _0	Number of NOVs	47	100.00
			Subtotal		4,600.00
			Justicial	4 05,750.00	4,000.00

TOTAL \$ 86,350.00

Appendix C – Non-Significant Categorical Industrial User Listing

Appendix C.

Encina Wastewater Authority 2022 Pretreatment Annual Report

Non-Significant Categorical Industrial Users (NSCIUs)

Gematria Products, Inc. 2260 Rutherford Road, Suite 101 Carlsbad, CA 92008 Category – 40 CFR Part 439

Piercan USA, Inc. 160 Bosstick Boulevard San Marcos, CA 92069 Category – 40 CFR Part 428

Sabre Sciences 2233 Faraday, Suite K Carlsbad, CA 92008 Category – 40 CFR Part 439

Seven Manufacturing 1420 Decision Street, Suite C Vista, CA 92081 Category – 40 CFR Part 439

The GHT Companies 2465 Ash Street Vista, CA 92081 Category – 40 CFR Part 439

Appendix D – Pretreatment Program Budget

OPERATING EXPENSE SUMMARY: SOURCE CONTROL

PERSONNE	iL .	Actual FY2020	Budget FY2021	Projected FY2021	-	Recommended FY2022	% Change
5100	Salaries	\$ 500,913	\$ 494,861	\$ 562,233	\$	452,195	-9%
5200	Benefits	\$ 227,929	\$ 243,438	\$ 165,168	\$	251,508	3%
	Total Personnel Expenses	\$ 728,842	\$ 738,299	\$ 727,401	\$	703,703	-5%

NON-	PERS	ONNEL	Actual FY2020	Budget FY2021	Projected FY2021	١	Recommended FY2022	% Change
40001	5520	Books	\$ *	\$ 300	\$ -	\$	-	-100%
40001	5930	Equipment Replacement	\$ 1,712	\$ 700	\$ 284	\$	700	0%
40001	6120	Fuel & Lube	\$ 949	\$ 2,300	\$ 1,100	\$	2,100	-9%
40001	6310	Lab Equipment Repair	\$ 4,782	\$ 6,200	\$ 9,976	\$	6,300	2%
40001	6330	Lab Supplies	\$ 86	\$ 750	\$ 156	\$	750	0%
40001	6410	Laundry & Uniforms	\$ 1,699	\$ 2,000	\$ 1,587	\$	2,000	0%
40001	6422	Legal Notices	\$ 386	\$ 750	\$ -	\$	750	0%
40001	6450	Professional Services	\$ 20,990	\$ 15,000	\$ 2,266	\$	10,000	-33%
40001	7120	Printing & Reproduction	\$ 17.00	\$ 500	\$ 5	\$	500	0%
40001	7130	Public Information	\$ 2,087	\$ 2,000	\$ 2,681	\$	2,000	0%
		Total Non-Personnel Expenses	\$ 32,691	\$ 30,500	\$ 18,050	\$	25,100	-18%

INTERNA	L SERVICE FUNDS	Actual FY2020	Budget FY2021	Projected FY2021	-	Recommended FY2022	% Change
11001	Administration	\$ 106,435	\$ 115,617	\$ 110,645	\$	124,322	8%
12001	Laboratory	\$ 50,747	\$ 79,810	\$ 56,195	\$	60,000	-25%
13001	Energy Management	\$ 2,216	\$ 2,281	\$ 2,272	\$	2,417	6%
	Total Internal Service Fund Expenses	\$ 159,398	\$ 197,708	\$ 169,112	\$	186,739	-6%
	Total Operating Expenses	\$ 920,931	\$ 966,507	\$ 914,563	\$	915,542	-5%

OPERATING EXPENSE SUMMARY: SOURCE CONTROL

PERSONNE	EL .	Actual FY2021	Budget FY2022	Projected FY2022	Recommended FY2023	% Change
5100	Salaries	\$ 577,703	\$ 452,195	\$ 464,250	\$ 464,446	3%
5200	Benefits	\$ 195,490	\$ 251,508	\$ 117,849	\$ 168,231	-33%
	Total Personnel Expenses	\$ 773,193	\$ 703,703	\$ 582,100	\$ 632,677	-10%

NON-	PERS	SONNEL	Actual FY2021	Budget FY2022	Projected FY2022	Recommended FY2023	% Change
40001	5930	Equipment Replacement	\$ 382	\$ 700	\$ 770	\$ 1,000	43%
40001	6120	Fuel & Lube	\$ 1,369	\$ 2,100	\$ 980	\$ 2,100	0%
40001	6310	Lab Equipment Repair	\$ 10,882	\$ 6,300	\$ 9,790	\$ 11,000	75%
40001	6330	Lab Supplies	\$ 65	\$ 750	\$ 1,274	\$ 1,600	113%
40001	6410	Laundry & Uniforms	\$ 1,731	\$ 2,000	\$ 1,518	\$ 2,000	0%
40001	6422	Legal Notices	\$ 386	\$ 750	\$ 513	\$ 750	0%
40001	6450	Professional Services	\$ 50,644	\$ 10,000	\$ 48,500	\$ 8,000	-20%
40001	7120	Printing & Reproduction	\$ 13	\$ 500	\$ 250	\$ 8	-100%
40001	7130	Public Information	\$ 2,083	\$ 2,000	\$ 493	\$ 2,000	0%
		Total Non-Personnel Expenses	\$ 67,555	\$ 25,100	\$ 64,088	\$ 28,450	13%

INTERNAL	SERVICE FUNDS	Actual FY2021	Budget FY2022	Projected FY2022	Recommended FY2023	% Change
11001	Administration	\$ 112,272	\$ 124,322	\$ 129,897	\$ 155,424	25%
12001	Laboratory	\$ 81,598	\$ 60,000	\$ 62,911	\$ 85,801	43%
13001	Energy Management	\$ 2,254	\$ 2,417	\$ 1,861	\$ 1,996	-17%
	Total Internal Service Fund Expenses	\$ 196,124	\$ 186,739	\$ 194,669	\$ 243,221	30%
	Total Operating Expenses	\$ 1,036,872	\$ 915,542	\$ 840,857	\$ 904,348	-1%

Appendix E – SNC Publication

PROOF OF PUBLICATION (2010 & 2011 C.C.P.)

STATE OF CALIFORNIA County of San Diego

I am a citizen of the United States and a resident of the County aforesaid: I am over the age of eighteen years and not a party to or interested in the above-entitled matter. I am the principal clerk of the printer of

The San Diego Union Tribune

Formerly known as the North County Times and UT North County and which newspaper has been adjudicated as a newspaper of general circulation by the Superior Court of the County of San Diego, State of California, for the City of Oceanside and the City of Escondido, Court Decree numbers 171349 & 172171, for the County of San Diego, that the notice of which the annexed is a printed copy (set in type not smaller than nonpariel), has been published in each regular and entire issue of said newspaper and not in any supplement thereof on the following dates, to-wit:

February 27th, 2023

I certify (or declare) under penalty of perjury that the foregoing is true and correct.

Dated at **Temecula, California this 27**th, day of February, **2023**

Jane Allshouse – Legal Advertising The San Diego Union Tribune

ane Allshouse

PUBLIC NOTICE

INDUSTRIAL USERS IN SIGNIFICANT NON-COMPLIANCE WITH SEWER DISCHARGE REQUIREMENTS

For the period from January 1, 2022 through December 31, 2022, the following INDUSTRIAL USERS, located in the Encina Wastewater Authority service area, were found to be in Significant Non-Compliance for exceeding applicable discharge limits or failing to meet reporting requirements, based on statistical criteria established by EPA and set forth at 40 CFR Part 403.8(f)(2)(viii). For further information please contact Alicia Appel, Encina Wastewater Authority Director of Environmental Compliance at (760) 438-3941, extension 3600.

Industry	Address	Pollutant/Other			
Captek Softgel International, Inc.	2710 Progress St., Vista, CA 92081	Biochemical Oxygen Demand and Missed Interim Compliance Schedule Date			
Cintas Corporation	460 West California Ave, Vista, CA 92084	Biochemical Oxygen Demand			
Premier Nutra Pharma	5800 Newton Drive, Carlsbad, CA 92008	90 Compliance Report (> 30 days late)			
Primarch Manufacturing, Inc.	1211 Liberty Way, Vista, CA 92083	Acetone			

content

any

or repurpose

exploit

any way

.⊑

o

indicated. You may not create derivative works,

page

and

date

bune on the

Diego Union-T

San

in The

This E-Sheet(r) is provided as conclusive evidence that the ad appeared

Publication

MACHADO

has been for everybody in the clubhouse. That's the guy that everyone's kind of relied on and counted on him. When he's in the lineup, you feel pretty good about your chances to win. So imagining what it'd be like with all these great players and not him wouldn't be the same, so I'm super stoked."

Machado, 30, played in his second spring training game Sunday afternoon and for the second time had two

When he signed as a free agent in February 2019, Machado and his agent, Dan Lozano, acquired the ability for Machado to opt out of his 10-year, \$300 million contract following the 2023 season. And Machado had said he would do so absent a new deal.

Machado in December set a deadline of Feb. 16 for a new contract to get done. The Padres offered him a five-year extension worth \$105 million on Feb. 14. On Feb. 18, Machado confirmed he wanted to focus on the season and not negotiations.

Padres Chairman Peter Seidler said last week that Machado was his "top priority." The sides continued to talk, and a deal was struck that, when completed, will have earned Machado \$500 million over 15 total years with the Padres.

Machado's contract is the fourth in the past six months the Padres have awarded that has a nine-figure total value, following Musgrove's five-year, \$100 million deal signed in August, Xander Bogaerts signing for 11 years and \$280 million in December, and Yu

before Sunday's spring training game against the Arizona Diamondbacks in Peoria, Ariz.

Darvish's reworked deal for six years and \$108 million.

The \$31.8 million average annual value of Machado's deal boosts the Padres' commitments in regard to the Competitive Balance Tax by \$1.8 million, pushing them past the \$273 million third threshold.

They will pay a 50 percent tax on their first \$20 million overage beyond \$233 million, a 62 percent tax on every dollar from \$253 million to \$273 million and a 75 percent tax

on every dollar over that up to \$293 million. A team's CBT payroll is not tallied until the end of the season, so the Padres could still slip below the third threshold.

Machado's average annual value is the third-highest for all third basemen, behind the Angels' Anthony Rendon (\$35 million) and Cardinals' Nolan Arenado (\$32.5 million). The total value of Machado's contract is the highest for third baseman, \$35 million more than

the 10-year, \$315 million deal Rafael Devers signed with the Red Sox last month. It is the fourth-largest MLB contract in terms of total value.

The team believes the in-

vestment in a player who will turn 31 in July is worth it because of his history and what they project as his future. Machado has not been on

the injured list since 2014. His 5,007 plate appearances since the start of the 2015 season are most in the major leagues. In that span, he has

played in more games (1,156) than all but Cardinals first baseman Paul Goldschmidt (1.158).

Not only can players now be further preserved by serving as a designated hitter, which became universal in 2022, but recent seasons have indicated Machado is squarely in his prime.

Since 2020, Machado ranks in the top 10 in several performance metrics. He finished third in National League MVP voting in 2020 and second in 2022.

Machado will be chasing significant milestones in the

latter years of his career. He is on track to reach 400 home runs as early as 2026. Machado is also 903 hits from 2,500 for his career.

Of the 29 players to have achieved the 400/2,500 double, just seven are not in the National Baseball Hall of Fame. Two of those players (Adrián Beltré and Albert Pujols) are not yet eligible, one (Miguel Cabrera) is still playing, one (Carlos Beltrán) was eligible for the first time this year and will have to overcome his role in the 2017 Astros cheating scandal, and three (Rafael Palmeiro, Manny Ramirez and Gary Sheffield) have had their candidacies derailed by links to performance enhancing drug use.

There are 18 third basemen in the Hall of Fame, and those men averaged 5.5 WAR - which measures a player's value based on all aspects of the game — per 162 games over their career. Machado's average is 5.8.

The Hall of Fame third basemen have an average career WAR of 68.3, a mark a healthy Machado would likely surpass within four to five years.

"Obviously, I think Goal 1 for him is to win a World Series, as it is for all of us," Padres infielder Jake Cronenworth said. "... But he's got the opportunity to do something special ... and hopefully get to the Hall of Fame. That's one of those things, you don't get to see too many guys do that. To have somebody in your clubhouse that you could potentially play with at the time he gets those achievements is even more special."

kevin.acee@sduniontribune.com

Legal Notices

The San Diego Union-Tribune

Metro and North San Diego | 866-411-4140 The Californian, SW Riverside | 951-251-0329

email: legals@sduniontribune.com | email: legalsnorth@sduniontribune.com | email: legalswr@sduniontribune.com

NOTICE TO CREDITORS
OF
MAE A. MALONE

Notice is hereby given to the creditors and contingent creditors of MAE A. MALONE ("Decedent"), that all persons having claims against the Decedent are required to mail or deliver a copy to PATRICK S. MALONE, as Trustee of the MAE A. MALONE 2006 TRUST, dated February 15, 2006, as amended, wherein the Decedent was the Settlor, in care of Tamara Reid, Esq., Aguirre Riley, P.C., 427 W. Plumb Lane, Reno, NV 89509, within the later of four (4) months after the first publication of this notice or, if notice is mailed or personally delivered to you, sixty of this notice or, if notice is mailed or personally delivered to you, sixty (60) days after the date this notice is mailed or personally delivered to you. A claim form may be obtained from the court clerk. For your protection, you are encouraged to file your claim by certified

mail, with return receipt requested.

Dated this 6 day of February 2023.

/s/ PATRICK S. MALONE c/o Tamara Reid, Esq. Aguirre Riley, P.C. 427 W. Plumb Lane

Reno, NV 89509
Tel: 775-376-9477 Fax: 775-964-5346 Email: Tamara@aguirreriley.com
Attorney for Patrick S. Malone

SWEETWATER AUTHORITY - NOTICE OF PUBLIC HEARING

Fixing Compensation for Members of the Governing Board

Notice is hereby given that the Governing Board of Sweetwater Authority will conduct a public hearing, as part of the Regular Meeting of the Board, on March 8, 2023, at 6:00 P.M., to consider increasing its per diem compensation to Directors from \$150 to \$200. The meeting will be held both in person at 505 Garrett Avenue, Chula Vista, California 91910 and via teleconference. The Board will hold the public hearing in order to receive oral and written testimony regarding the proposed adoption of Resolution No. 23-06. Instructions for members of the public to observe the Board meeting and the public hearing in person or via teleconference will be included in the March 8, 2023 meeting agenda.

Members of the public who wish to address the Governing Board on this item may submit written testimony for receipt no later than 5:00 pm on March 8, 2023 (with a reading limit of no more than 3 minutes), by one of the following methods: 1. By going to www.sweetwater.org, click on the "HOW DO I..." at the top of the page, and then click on the "Public Comment" link in the Contact section; OR 2. By physically depositing your public comment in the Authority's payment drop box located in the public parking lot at the Authority's Administrative Office; or at 505 Garrett Avenue, Chula Vista; OR 3. Mailing your comments to 505 Garrett Avenue, Chula Vista; CA 91910 [Attention: Public Comment]. All written testimony will be read about to the Board dur-Members of the public who wish to address the Governing Board on Comment]. All written testimony will be read aloud to the Board during the Public Hearing. Members of the public may also provide oral testimony during the Public Hearing via teleconference by following the instructions for public comment included in the March 8, 2023 meeting agenda. These public comment procedures supersede the Authority's standard public comment policies and procedures to the

Upon the conclusion of the public hearing, the Governing Board will consider adoption of proposed Resolution No. 23-06, which would increase the amount of compensation for members of the Governing Board and amend Policy 510 of the Policies & Procedures for the Governing erning Board to reflect this increase in compensation effective July 1, 2023. Copies of proposed Resolution No. 23-06 will be made available upon posting of the agenda for the March 8, 2023 Regular meeting of the Board, by calling the Board Secretary at (619) 409-6703, sending an email to boardsecretary@sweetwater.org, or at the Authority's web site: www.sweetwater.org

NOTICE OF PETITION TO ADMINISTER ESTATE OF: **DEAN VERHEYEN**

CASE NO. 37-2023-00004640-PR-LA-CTL

To all heirs, beneficiaries, creditors, contingent creditors, and persons who may otherwise be interested in the will or estate, or both, of: **DEAN VERHEYEN**

Petition for Probate has been filed by HILLARY HOPE VERHEYEN in the Superior Court of California, County of SAN

The Petition for Probate requests that HILLARY HOPE **VERHEYEN** be appointed as personal representative to administer the estate of the decedent.

The petition requests authority to administer the estate under the Independent Administration of Estates Act. (This authority will allow the personal representative to take many actions without obtaining court approval. Before taking certain very important actions, however, the personal representative will be required to give notice to interested persons unless they have waived notice or consented to the proposed action.) The independent administration authority will be granted unless an interested person files an objection to the petition and shows good cause why the court should not grant the authority.

A hearing on the petition will be held in this court as follows: Date: 3/16/2023 Time: 1:30PM Dept.: 503

Address of court: 1100 UNION STREET SAN DIEGO CA 92101

Branch Name: CENTRAL COURTHOUSE - PROBATE DIVISION

If you object to the granting of the petition you should appear

If you object to the granting of the petition, you should appear at the hearing and state your objections or file written objections with the court before the hearing. Your appearance may be in person or by your attorney.

If you are a creditor or a contingent creditor of the decedent,

you must file your claim with the court and mail a copy to the personal representative appointed by the court within the **later** of either (1) **four months** from the date of first issuance of letters to a general personal representative, as defined in section 58(b) of the California Probate Code, or (2) **60 days** from the date of mailing or personal delivery to you of a notice under section 9052 of the California Probate Code. Other California statutes and legal authority may affect your rights as a creditor. You may want to consult with an attorney knowledgeable in California

You may examine the file kept by the court. If you are a person interested in the estate, you may file with the court a Request for Special Notice (form DE-154) of the filing of an inventory and appraisal of estate assets or of any petition or account as provided in Probate Code section 1250. A Request for Special Notice form is available from the court clerk.

ATTORNEY FOR PETITIONER: JEFFREY A. CHRISTERSON 311 BONITA DRIVE, APTOS, CA, 95003, 831-662-8444 02/27/23, 02/28/23, 03/06/23 7918374 VISTA

NOTICE OF PETITION TO ADMINISTER ESTATE OF: LAURA MAYE SHEEHAN

CASE NO. 37-2022-00051833-PR-LA-CTL

To all heirs, beneficiaries, creditors, contingent creditors, and persons who may otherwise be interested in the will or estate, or both, of: LAURA MAYE SHEEHAN

A Petition for Probate has been filed by KATHLEEN M.

SHEEHAN in the Superior Court of California, County of SAN

The Petition for Probate requests that **KATHLEEN M. SHEEHAN** of the decedent.

The petition requests authority to administer the estate under the Independent Administration of Estates Act. (This authority will allow the personal representative to take many actions without obtaining court approval. Before taking certain very important actions, however, the personal representative will be required to give notice to interested persons unless they have waived notice or consented to the proposed action.) The independent adminis-

or consented to the proposed action.) The independent administration authority will be granted unless an interested person files an objection to the petition and shows good cause why the court should not grant the authority.

A hearing on the petition will be held in this court as follows: Date: 03/15/2023 Time: 1:30 PM Dept.: 502

Address of court: 1100 Union Street, San Diego, CA 92101

Branch Name: Central Courthouse. Court appearances may be made either in person or virtually, unless otherwise ordered by the Court. Virtual appearances must be made using the department's Microsoft Teams ("MS Teams") video link; or by calling the department's MS Teams conference phone number and using the assigned conference ID number. The MS Teams video conference links and phone numbers can be found at www.sdcourt.ca.gov/ProbateHearings.

If you object to the granting of the petition, you should appear

If you object to the granting of the petition, you should appear at the hearing and state your objections or file written objections with the court before the hearing. Your appearance may be in

If you are a creditor or a contingent creditor of the decedent, you must file your claim with the court and mail a copy to the personal representative appointed by the court within the **later** of either (1) **four months** from the date of first issuance of letters to a general personal representative, as defined in section 58(b) of the California Probate Code, or (2) 60 days from the date of mailing or personal delivery to you of a notice under section 9052 of the California Probate Code. Other California statutes and legal authority may affect your rights as a creditor. You may want to consult with an attorney knowledgeable in California

You may examine the file kept by the court. If you are a person interested in the estate, you may file with the court a Request for Special Notice (form DE-154) of the filing of an inventory and appraisal of estate assets or of any petition or account as provided in Probate Code section 1250. A Request for Special Notice form

is available from the court clerk.
ATTORNEY FOR PETITIONER: DANIEL E. PASSMORE
630 ALTA VISTA DRIVE, SUITE 106, VISTA, CA, 92084, (760)
724-2103 02/20/23, 02/21/23, 02/27/23 7917175

NOTICE OF PETITION TO ADMINISTER ESTATE OF: HOAT D. LE

CASE NO. 37-2022-00050242-PR-PW-CTL To all heirs, beneficiaries, creditors, contingent creditors, and

persons who may otherwise be interested in the will or estate, or both, of: **HOAT D. LE**A **Petition for Probate** has been filed by **SANDRA W. LEW** in

the Superior Court of California, County of **SAN DIEGO**.
The Petition for Probate requests that **SANDRA W. LEW** be appointed as personal representative to administer the estate of

The petition requests the decedent's will and codicils, if any, be admitted to probate. The will and any codicils are available for examination in the file kept by the court.

The petition requests authority to administer the estate under the Independent Administration of Estates Act. (This authority will allow the personal representative to take many actions without obtaining court approval. Before taking certain very important actions, however, the personal representative will be required to give notice to interested persons unless they have waived notice or consented to the proposed action.) The independent administration authority will be granted unless an interested person files

an objection to the petition and shows good cause why the court should not grant the authority.

A hearing on the petition will be held in this court as follows: Date: 03/09/2023 Time: 1:30 PM Dept.: 503

Address of court: 1100 Union Street, San Diego, CA 92101

Branch Name: Central Courthouse

If you object to the granting of the petition, you should appear at the hearing and state your objections or file written objections with the court before the hearing. Your appearance may be in person or by your attorney.

If you are a creditor or a contingent creditor of the decedent,

you must file your claim with the court and mail a copy to the personal representative appointed by the court within the **later** of either (1) **four months** from the date of first issuance of letters to a general personal representative, as defined in section 58(b) of the California Probate Code, or (2) **60 days** from the date of mailing or personal delivery to you of a notice under section 9052 of the California Probate Code. Other California statutes and legal authority may affect your rights as a creditor. You may want to consult with an attorney knowledgeable in California

You may examine the file kept by the court. If you are a person rou may examine the file kept by the court. If you are a person interested in the estate, you may file with the court a Request for Special Notice (form DE-154) of the filing of an inventory and appraisal of estate assets or of any petition or account as provided in Probate Code section 1250. A Request for Special Notice form

is available from the court clerk. PETITIONER: SANDRA W. LEW 11385 MAYAPPLEWAY, SAN DIEGO, CA, 92131, 858-212-5181 02/20/23, 02/21/23, 02/27/23

NOTICE OF PETITION TO ADMINISTER ESTATE OF: ANTONIO F. VIANNA

CASE NO. 37-2023-00000577-PR-LA-CTL To all heirs, beneficiaries, creditors, contingent creditors, and

persons who may otherwise be interested in the will or estate, or both, of: **ANTONIO F. VIANNA**

A **Petition for Probate** has been filed by **VICTORIA FRIGO** in the Superior Court of California, County of **SAN DIEGO**.

The Petition for Probate requests that **VICTORIA FRIGO** be appointed as personal representative to administer the estate of

the decedent.

The petition requests the decedent's will and codicils, if any, be admitted to probate. The will and any codicils are available for examination in the file kept by the court.

The petition requests authority to administer the estate under the Independent Administration of Estates Act. (This authority will

allow the personal representative to take many actions without obtaining court approval. Before taking certain very important actions, however, the personal representative will be required to give notice to interested persons unless they have waived notice or consented to the proposed action.) The independent adminis-tration authority will be granted unless an interested person files an objection to the petition and shows good cause why the court

A hearing on the petition will be held in this court as follows:
Date: 3/15/2023 Time: 1:30 PM Dept.: 502
Address of court: 1100 UNION ST SAN DIEGO 92101
Branch Name: CENTRAL

If you object to the granting of the petition, you should appear at the hearing and state your objections or file written objections with the court before the hearing. Your appearance may be in

person or by your attorney. If you are a creditor or a contingent creditor of the decedent, you must file your claim with the court and mail a copy to the personal representative appointed by the court within the later of either (1) **four months** from the date of first issuance of letters to a general personal representative, as defined in section 58(b) of the California Probate Code, or (2) **60 days** from the date of mailing or personal delivery to you of a notice under section 9052 of the California Probate Code. Other California statutes and legal authority may affect your rights as a creditor. You may want to consult with an attorney knowledgeable in California

You may examine the file kept by the court. If you are a person interested in the estate, you may file with the court a Request for Special Notice (form DE-154) of the filing of an inventory and ap-

ppecial Notice (1011) DE-154) of the filing of an inventory and appraisal of estate assets or of any petition or account as provided in Probate Code section 1250. A Request for Special Notice form is available from the court clerk.

ATTORNEY FOR PETITIONER: CARL A. LARSON 5531 CANCHA DE GOLF, STE. 205, RANCHO SANTA FE, CA, 92091, 858-756-3743 02/26/23, 02/27/23, 03/05/23

PUBLIC NOTICE

INDUSTRIAL USERS IN SIGNIFICANT NON-COMPLIANCE WITH SEWER DISCHARGE REQUIREMENTS

For the period from January 1, 2022 through December 31. 2022, the following INDUSTRIAL USERS, located in the Encina Wastewater Authority service area, were found to be in Significant Non-Compliance for exceeding applicable discharge limits or failing to meet reporting requirements, based on statistical criteria established by EPA and set forth at 40 CFR Part 403.8(f)(2)(viii). For further information please contact Alicia Appel, Encina Wastewater Authority Director of Environmental Compliance at (760) 438-3941, extension 3600.

Industry	Address	Pollutant/Other			
Captek Softgel International, Inc.	2710 Progress St., Vista, CA 92081	Biochemical Oxygen Demand and Missed Interim Compliance Schedule Date			
Cintas Corporation	460 West California Ave, Vista, CA 92084	Biochemical Oxygen Demand			
Premier Nutra Pharma	5800 Newton Drive, Carlsbad, CA 92008	90 Compliance Report (> 30 days late)			
Primarch Manufacturing, Inc.	1211 Liberty Way, Vista, CA 92083	Acetone			

Video Tributes

now included with an obituary notice in The San Diego Union-Tribune

Union-Tribune